QUALIFYING EXAMINATION
 MA 544

Spring 1995

Name: \qquad

Instructions. Standard notation is used throughout. In particular, $\mathbb{R}=\{$ reals $\}, \mathbb{R}_{+}=$ $\{x \in \mathbb{R}: x \geq 0\}, I$ is a compact interval in \mathbb{R}, and $|A|$ is the Lebesgue measure of A, a measurable subset of \mathbb{R}.

There will be 6 additional pages with a problem on each page. Use the space provided for your solution of the problem.

1. Let $\left\{f_{n}\right\} \subset C(I)$ such that for $x \in I, f_{1}(x) \leq f_{2}(x) \leq \cdots \rightarrow f(x)$ pointwise on I. Show that $\left\{f_{n}\right\}$ is equicontinuous on I if and only if $f \in C(I)$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be measurable, and let $0<r<\infty$. Show that

$$
\frac{1}{\frac{1}{|I|} \int_{I} f} \leq\left(\frac{1}{|I|} \int_{I} \frac{1}{f^{r}}\right)^{1 / r}
$$

for every $I \subset \mathbb{R}$.
(Hint: $|I|=\int_{I} f^{t} f^{-t}$.)
3. Let $\left\{f_{n}\right\}$ be a sequence of non-negative measurable functions in $L^{p}(\mathbb{R})$ for some $1<$ $p<\infty$. Show that $f_{n} \rightarrow f\left(L^{p}\right)$ if and only if $f_{n}^{p} \rightarrow f^{p}\left(L^{1}\right)$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be measurable, and let $\epsilon>0$. Show that there exists $g: \mathbb{R} \rightarrow \mathbb{R}_{+}$ measurable such that (i) $\|f-g\|_{\infty} \leq \epsilon$ and (ii) for every $r \in \mathbb{R},|\{x: g(x)=r\}|=0$.
5. Assume that $f \in A C(I)$ for every $I \subset \mathbb{R}$. If both f and f^{\prime} are in $L^{1}(\mathbb{R})$ show that (i) $\int_{\mathbb{R}} f^{\prime}=0$, and (ii) $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
6. For $f: I \rightarrow \mathbb{R}$ let

$$
\begin{aligned}
& \bar{D} f(x)=\limsup _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \underline{D} f(x)=\liminf _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

If $-K \leq \underline{D} f(x) \leq \bar{D} f(x) \leq K<\infty$ for every $x \in I$, show that $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right| \leq$ $K\left|x^{\prime}-x^{\prime \prime}\right|$ for every $x^{\prime}, x^{\prime \prime} \in I$.

