QUALIFYING EXAMINATION
 MA 544

FALL 1995

Name: \qquad

Instructions. Standard notation is used throughout. In particular, $\mathbb{R}=\{$ reals $\}, \mathbb{R}_{+}=$ $\{x \in \mathbb{R}: x \geq 0\}, I_{0}=[0,1]$, and $C\left(I_{0}\right), B V\left(I_{0}\right), A C\left(I_{0}\right), L^{p}\left(I_{0}\right)$ are the common function spaces over I_{0}. For a measurable subset A of \mathbb{R}, let $|A|$ denote the Lebesgue measure of A. All functions are assumed to be measurable.

There will be 6 additional pages with a problem on each page. Use the space provided for your solution of the problem.

1. Let $f, g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$have the property that for each $0<x<\infty$

$$
\int_{0}^{x} g(t) d t \leq \int_{0}^{x} f(t) d t
$$

Show that, if $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is non-increasing, then

$$
\int_{0}^{\infty} \phi(t) g(t) d t \leq \int_{0}^{\infty} \phi(t) f(t) d t
$$

2. Let $f \in L^{p}\left(I_{0}\right)$ for some $1 \leq p<\infty$. Assume that for all $x \in I_{0}$

$$
\int_{I_{0}} f(y) \sin (x y) d y=0
$$

Show that $f(x)=0$ for a.e. $x \in I_{0}$.
3. Let $\left\{f_{n}\right\} \subset L^{p}\left(I_{0}\right)$ for some $1 \leq p<\infty$, and assume that $f_{n} \rightarrow f\left(L^{p}\right)$.
(i) Give an example showing that there may not exist $g \in L^{p}\left(I_{0}\right)$ such that $\left|f_{n}(x)\right| \leq g(x)$ for a.e. $x \in I_{0}$ and $n=1,2, \cdots$.
(ii) Show that there exists $n_{1}<n_{2}<\cdots$ and there exists $g \in L^{p}\left(I_{0}\right)$ such that $\left|f_{n_{j}}(x)\right| \leq g(x)$ for a.e. $x \in I_{0}$ and $j=1,2, \cdots$.
4. Let f, g be two non-negative functions belonging to $L^{p}\left(I_{0}\right)$ for some $1<p<\infty$. Assume that for every $0<y<\infty$,

$$
|\{x: g(x)>y\}| \leq \frac{1}{y} \int_{\{x: g(x)>y\}} f(x) d x
$$

Show that $\|g\|_{p} \leq p^{\prime}\|f\|_{p}, 1 / p+1 / p^{\prime}=1$.
Hint:(i) you may use $\|\phi\|_{p}^{p}=p \int_{0}^{\infty} y^{p-1}|\{x:|\phi(x)|>y\}| d y$, and (ii) iterated integrals are equal.
5. Let $f, g: I_{0} \rightarrow I_{0}$ be in $A C\left(I_{0}\right)$.
(i) Give an example showing that $f \circ g$ need not be in $A C\left(I_{0}\right)$.
(ii) Prove: If $f \circ g \in B V\left(I_{0}\right)$, then $f \circ g \in A C\left(I_{0}\right)$.
6. Let $f \in C\left(I_{0}\right) \cap B V\left(I_{0}\right)$. Show that there exists a homeomorphism h from I_{0} onto I_{0} such that $f \circ h$ is Lipschitz on I_{0}, i.e., there exists $0<M<\infty$ such that for every $x^{\prime}, x " \in I_{0}$ we have $\left|f \circ h\left(x^{\prime}\right)-f \circ h(x ")\right| \leq M\left|x^{\prime}-x "\right|$.
Hint: Let $v(t)=$ variation of f on $[0, t]$, and let h be the inverse of $\phi(t)=c(t+v(t))$ for some suitable constant c.

