QUALIFYING EXAMINATION MA 544

Fall 1995

Name: _____

Instructions. Standard notation is used throughout. In particular, $\mathbb{R} = \{\text{reals}\}, \mathbb{R}_+ = \{x \in \mathbb{R} : x \ge 0\}, I_0 = [0, 1], \text{ and } C(I_0), BV(I_0), AC(I_0), L^p(I_0) \text{ are the common function spaces over } I_0$. For a measurable subset A of \mathbb{R} , let |A| denote the Lebesgue measure of A. All functions are assumed to be measurable.

There will be 6 *additional* pages with a problem on each page. Use the space provided for your solution of the problem.

1. Let $f,g:\mathbb{R}_+ \to \mathbb{R}_+$ have the property that for each $0 < x < \infty$

$$\int_0^x g(t) \, dt \le \int_0^x f(t) \, dt.$$

Show that, if $\phi:\mathbb{R}_+\to\mathbb{R}_+$ is non-increasing, then

$$\int_0^\infty \phi(t)g(t)\,dt \le \int_0^\infty \phi(t)f(t)\,dt.$$

2. Let $f \in L^p(I_0)$ for some $1 \le p < \infty$. Assume that for all $x \in I_0$

$$\int_{I_0} f(y) \sin(xy) \, dy = 0.$$

Show that f(x) = 0 for a.e. $x \in I_0$.

FALL 1995

3. Let $\{f_n\} \subset L^p(I_0)$ for some $1 \leq p < \infty$, and assume that $f_n \to f(L^p)$. (i) Give an example showing that there may not exist $g \in L^p(I_0)$ such that $|f_n(x)| \leq g(x)$ for a.e. $x \in I_0$ and $n = 1, 2, \cdots$.

(ii) Show that there exists $n_1 < n_2 < \cdots$ and there exists $g \in L^p(I_0)$ such that $|f_{n_j}(x)| \le g(x)$ for a.e. $x \in I_0$ and $j = 1, 2, \cdots$.

4. Let f, g be two non-negative functions belonging to $L^p(I_0)$ for some $1 . Assume that for every <math>0 < y < \infty$,

$$|\{x:g(x) > y\}| \le \frac{1}{y} \int_{\{x:g(x) > y\}} f(x) \, dx.$$

Show that $||g||_p \leq p'||f||_p$, 1/p + 1/p' = 1. Hint:(i) you may use $||\phi||_p^p = p \int_0^\infty y^{p-1} |\{x : |\phi(x)| > y\} | dy$, and (ii) iterated integrals are equal. 5. Let $f, g: I_0 \to I_0$ be in $AC(I_0)$. (i) Give an example showing that $f \circ g$ need not be in $AC(I_0)$. (ii) Prove: If $f \circ g \in BV(I_0)$, then $f \circ g \in AC(I_0)$. 6. Let $f \in C(I_0) \cap BV(I_0)$. Show that there exists a homeomorphism h from I_0 onto I_0 such that $f \circ h$ is Lipschitz on I_0 , i.e., there exists $0 < M < \infty$ such that for every $x', x'' \in I_0$ we have $|f \circ h(x') - f \circ h(x'')| \leq M|x' - x''|$.

Hint: Let v(t) = variation of f on [0, t], and let h be the inverse of $\phi(t) = c(t + v(t))$ for some suitable constant c.