QUALIFYING EXAMINATION
 AUGUST 1994
 MATH 544

1. Assume f_{n} is a measurable function on \mathbb{R} for $n=1,2, \ldots$, and $f_{n}(x) \rightarrow f(x), \forall x$. In each case say whether the additional hypotheses given imply that $\int f_{n}(x) d x \rightarrow$ $\int f(x) d x$ and justify your answer.
(5) a. $\forall n,\left|f_{n}\right| \leq 1$ and $m\left(\left\{x: f_{n}(x) \neq 0\right\}\right) \leq 1$.
b. $\forall n, \forall x,\left|f_{n}(x)\right| \leq \frac{1}{1+x^{2}}$.
c. $\forall n, f_{n} \geq 0$ and $\int f_{n}(x) d x \leq 1$.
d. $\forall n, 0 \leq f_{n} \leq f_{n+1}$ and $\int f_{n}(x) d x \leq 1$.
2. Assume f_{n} is a measurable function on $[0,1]$ for $n=1,2, \ldots,\left|f_{n}\right| \leq g, \forall n$, $\int_{0}^{1} g(x) d x<\infty$, and $F_{n}(x)=\int_{0}^{x} f_{n}(t) d t$ for x in $[0,1]$. Show that $\left(F_{n}\right)_{n=1}^{\infty}$ has a uniformly convergent subsequence.
3. Let f be a measurable function on a measure space (S, μ), and assume $1 \leq p_{1}<p<p_{2}<\infty$.
(7) a. Show that if $\|f\|_{p_{1}}<\infty$ and $\|f\|_{p_{2}}<\infty$, then $\|f\|_{p}<\infty$.
(8) b. Show that if $\mu(S)<\infty$ and $\|f\|_{p}<\infty$, then $\|f\|_{p_{1}}<\infty$.
c. Show that there is a function f on $[0,1]$ with Lebesgue measure such that $\|f\|_{1}<\infty$ and $\|f\|_{p}=\infty, \forall p>1$.
4. For f a real-valued function on $[0,1]$ let $f_{h}(x)=\left\{\begin{array}{cc}f(x+h), & x+h \in[0,1] \\ 0, & x+h \notin[0,1]\end{array}\right.$.
(10) a. Assume $f \in L^{p}$ and $1 \leq p<\infty$. Show that $\forall \epsilon>0, \exists \delta>0$ such that $|h|<\delta \Rightarrow\left\|f_{h}-f\right\|_{p}<\epsilon$.
(7) b. Assume f is continuous and $f(0)=f(1)=0$. Show that $\forall \epsilon>0, \exists \delta>0$ such that $|h|<\delta \Rightarrow\left\|f_{h}-f\right\|_{\infty}<\epsilon$.
(8) c. Prove the converse to b: If $f \in L^{\infty}$ and if $\forall \epsilon>0, \exists \delta>0$ such that $|h|<\delta \Rightarrow$ $\left\|f_{h}-f\right\|_{\infty}<\epsilon$, then there is a continuous function \tilde{f} such that $\tilde{f}(0)=\tilde{f}(1)=0$
and $\tilde{f}=f$ almost everywhere. (Hint for c: First show that $\forall \epsilon>0 \exists \mathrm{a}$ continuous function g_{ϵ} such that $\left\|f-g_{\epsilon}\right\|_{\infty}<\epsilon$.)
5. Assume f is a real-valued function on $[0,1]$ and
(i) f is continuous from the right at each x in $[0,1)$
(ii) The left-hand limit, $\lim _{y \rightarrow x-} f(y)$, exists for each x in $(0,1]$.
(5) a. Show that f is bounded.
(10) b. Show that for each $\epsilon>0$, there is a partition, $0=x_{0}<x_{1}<\cdots<x_{n}=1$, such that whenever $0 \leq i<n$ and $s, t \in\left[x_{i}, x_{i+1}\right)$, then $|f(s)-f(t)|<\epsilon$.
(Note: Hypothesis (ii) cannot be dropped and the conclusion of b would be false if $\left[x_{i}, x_{i+1}\right)$ is replaced by $\left[x_{i}, x_{i+1}\right]$.)
