QUALIFYING EXAMINATION AUGUST 1994 MATH 544

- Assume f_n is a measurable function on R for n = 1, 2, ..., and f_n(x) → f(x), ∀x. In each case say whether the additional hypotheses given imply that ∫ f_n(x)dx → ∫ f(x)dx and justify your answer.
 a. ∀n, |f_n| ≤ 1 and m({x : f_n(x) ≠ 0}) ≤ 1.
 b. ∀n, ∀x, |f_n(x)| ≤ 1/(1+x²).
- (5) c. $\forall n, f_n \ge 0$ and $\int f_n(x) dx \le 1$.

(5) d.
$$\forall n, 0 \le f_n \le f_{n+1}$$
 and $\int f_n(x) dx \le 1$.

- (15) 2. Assume f_n is a measurable function on [0,1] for $n = 1, 2, ..., |f_n| \leq g, \forall n,$ $\int_0^1 g(x) dx < \infty, \text{ and } F_n(x) = \int_0^x f_n(t) dt \text{ for } x \text{ in } [0,1]. \text{ Show that } (F_n)_{n=1}^\infty \text{ has a uniformly convergent subsequence.}$
 - 3. Let f be a measurable function on a measure space (S, μ) , and assume $1 \le p_1 .$
 - (7) a. Show that if $||f||_{p_1} < \infty$ and $||f||_{p_2} < \infty$, then $||f||_p < \infty$.
 - (8) b. Show that if $\mu(S) < \infty$ and $||f||_p < \infty$, then $||f||_{p_1} < \infty$.
 - (10) c. Show that there is a function f on [0,1] with Lebesgue measure such that $||f||_1 < \infty$ and $||f||_p = \infty, \forall p > 1.$

4. For f a real-valued function on [0,1] let $f_h(x) = \begin{cases} f(x+h), & x+h \in [0,1] \\ 0, & x+h \notin [0,1] \end{cases}$.

- (10) a. Assume $f \in L^p$ and $1 \leq p < \infty$. Show that $\forall \epsilon > 0, \exists \delta > 0$ such that $|h| < \delta \Rightarrow ||f_h f||_p < \epsilon$.
- (7) b. Assume f is continuous and f(0) = f(1) = 0. Show that $\forall \epsilon > 0, \exists \delta > 0$ such that $|h| < \delta \Rightarrow ||f_h f||_{\infty} < \epsilon$.
- (8) c. Prove the converse to b: If $f \in L^{\infty}$ and if $\forall \epsilon > 0$, $\exists \delta > 0$ such that $|h| < \delta \Rightarrow$ $||f_h - f||_{\infty} < \epsilon$, then there is a continuous function \tilde{f} such that $\tilde{f}(0) = \tilde{f}(1) = 0$

and $\tilde{f} = f$ almost everywhere. (Hint for c: First show that $\forall \epsilon > 0 \exists$ a continuous function g_{ϵ} such that $||f - g_{\epsilon}||_{\infty} < \epsilon$.)

- 5. Assume f is a real-valued function on [0, 1] and
 (i) f is continuous from the right at each x in [0, 1)
 (ii) The left-hand limit, lim_{y→x-} f(y), exists for each x in (0, 1].
- (5) a. Show that f is bounded.
- (10) b. Show that for each $\epsilon > 0$, there is a partition, $0 = x_0 < x_1 < \cdots < x_n = 1$, such that whenever $0 \le i < n$ and $s, t \in [x_i, x_{i+1})$, then $|f(s) f(t)| < \epsilon$.

(Note: Hypothesis (ii) cannot be dropped and the conclusion of b would be false if $[x_i, x_{i+1})$ is replaced by $[x_i, x_{i+1}]$.)