MATH 530 Qualifying Exam

August 2020 (S. Bell and L. Lempert)

Each problem is worth 20 points

1. Compute

$$
\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

2. Suppose $f(z)$ is analytic on $\Omega=\{z:|z|>2\}$ and maps Ω into itself.
a) Could such an f have an essential singularity at infinity? Explain
b) If $\lim _{z \rightarrow \infty} f(z)=\infty$ (i.e., if f has a pole at infinity), prove that $|f(z)| \geq|z|$ for all z in Ω.
3. Find all points in the closed unit disc $\{z:|z| \leq 1\}$ where $\left|z^{3}+z^{9}\right|$ assumes its maximum value.
4. Suppose f is analytic on $\mathbb{C}-\mathcal{A}$ where \mathcal{A} is a finite set and that the sum of the residues of f at the points in \mathcal{A} is zero. Prove that f has an analytic antiderivative on $\{z:|z|>R\}$ where $R=\max \{|a|: a \in \mathcal{A}\}$.
5. Let $\Omega=\mathbb{C}-\sigma$ where σ is the set $\{t+i \sin t: t \geq 0\}$. Show that there is a bounded analytic function on Ω that is not constant.
6. The Poisson kernel for the unit disc is

$$
P(z, \theta)=\frac{1}{2 \pi} \frac{1-|z|^{2}}{\left|e^{i \theta}-z\right|^{2}}=\frac{1}{2 \pi} \operatorname{Re}\left[\frac{e^{i \theta}+z}{e^{i \theta}-z}\right] .
$$

If $\phi(\theta)$ is a real valued continuous function on $[0,2 \pi]$ with $\phi(0)=\phi(2 \pi)$ that vanishes on a nonempty subinterval (α, β), show that the solution $u(z)$ to the Dirichlet problem on the unit disc with boundary data ϕ extends to be harmonic on $\mathbb{C}-\sigma$ where σ is the circular arc parametrized via $\left\{e^{i \theta}: \beta \leq \theta \leq 2 \pi+\alpha\right\}$ (i.e., the points on the unit circle outside the arc with angle between α and β.) Show that if $u(z)$ extends to be harmonic on all of \mathbb{C}, then ϕ must be identically zero.

