MATH 530 Qualifying Exam

January 2017 (S. Bell)
Each problem is worth 20 points

1. Suppose that $f(z)$ is analytic on the complex plane minus a single point z_{0}. Suppose further that f has a simple pole at z_{0} and a removable singularity at infinity. Prove that

$$
f(z)=\frac{A}{z-z_{0}}+B
$$

where A and B are complex constants.
2. Let

$$
f(z)=\frac{\log z}{\left(z^{2}+4\right)^{2}}
$$

where \log denotes a branch of the complex logarithm with branch cut along the negative imaginary axis that agrees with the real logarithm \ln on the positive real axis. For a radius $r>0$, let C_{r} denote the half circle parametrized by $z(t)=r e^{i t}$ for $0 \leq t \leq \pi$, and for $a<b$, let $L[a, b]$ denote the line segment on the real line parametrized by $z(t)=t$ for $a \leq t \leq b$.
a) Assume that $r>0$. Prove that $\int_{C_{r}} f(z) d z$ goes to zero as r goes to infinity and as r goes to zero.
b) Assume that $0<\epsilon<R$. Note that $\int_{L[\epsilon, R]} f(z) d z=\int_{\epsilon}^{R} \frac{\ln t}{\left(t^{2}+4\right)^{2}} d t$. Express $\int_{L[-R,-\epsilon]} f(z) d z$ in terms of explicit real integrals.
c) Compute the residue of $f(z)$ at $2 i$.
d) Finally, use the residue theorem, take limits, and take the real part to compute

$$
I=\int_{0}^{\infty} \frac{\ln t}{\left(t^{2}+4\right)^{2}} d t
$$

3. Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of distinct points in the unit disc with no limit points in the disc. Prove that the radius of convergence of the power series $\sum_{n=1}^{\infty} a_{n} z^{n}$ is equal to one.
4. Prove that the series $\sum_{n=1}^{\infty} \frac{1}{(z-n)^{2}}$ converges on the complex plane minus the positive integers to an analytic function with a double pole at each positive integer.
5. Suppose that $f(z)$ is a continuous complex valued function on a disc such that the integral $\int_{\gamma} f(z) d z$ is equal to zero for every contour γ that is the boundary of a square in the disc. Prove that f must be analytic.
