MATH 530 Qualifying Exam

January 2014 (S. Bell)
Each problem is worth 20 points
Notation: $D_{r}(a)$ denotes the open disc of radius r about a.

1. Suppose φ is a continuous function on a path γ and $D_{r}(a)$ is a disc whose closure does not intersect γ. Suppose that $z(t), \alpha \leq t \leq \beta$, is a continuous, piecewise C^{1} parameterization of γ. Let L denote the length of γ,
$d=\inf \{|z(t)-a|: \alpha \leq t \leq \beta\}$ denote the distance from a to γ, and
$M=\sup \{|\varphi(z(t))|: \alpha \leq t \leq \beta\}$. Suppose further that $w \in D_{r}(a)$.
Carefully bound the integral $\int_{\gamma} \frac{\varphi(z)}{(z-w)^{2}(z-a)} d z$ in terms of M, d, r, and L.
2. Suppose that $a_{1}, a_{2}, \ldots, a_{N}$ are distinct points in the complex plane contained in a circle of radius R_{0} where $N \geq 4$. Let $Q(z)$ denote the rational function given by

$$
Q(z)=\frac{z^{2}}{\prod_{n=1}^{N}\left(z-a_{n}\right)} .
$$

a) What is the residue of $Q(z)$ at one of the points a_{k} ?
b) State a version of the Residue Theorem that is most relevant to computing $\int_{C_{R}} Q(z) d z$, where C_{R} denotes a circle of radius $R>R_{0}$ about the origin parameterized in the counterclockwise sense.
c) State the most general Residue Theorem you know.
d) Prove that the integral in part (b) tends to zero as $R \rightarrow \infty$.
3. Suppose that $f(z)$ is analytic on the unit disc and maps the unit disc into itself. If a is a point in the unit disc, how big could $\left|f^{\prime}(a)\right|$ be? Explain.
4. Suppose that m and n are positive integers with $n>m$. Find the point or points in the closed unit disc where $\left|z^{n}-z^{m}\right|$ assumes its maximum value. Find the point or points where it assumes its minimum value.
5. Show that if φ is a real valued harmonic function on the unit disc that is continuous up to the boundary such that φ agrees with a real valued polynomial on the unit circle, then φ must be a harmonic real valued polynomial.
Hints: A real valued polynomial in x and y can be rewritten as a polynomial in $z=x+i y$ and $\bar{z}=x-i y$ via $x=\frac{1}{2}(z+\bar{z})$ and $y=\frac{1}{2 i}(z-\bar{z})$. Note that $\bar{z}=1 / z$ on the unit circle. Note also that $z=1 / \bar{z}$ there too.

