MATH 530 Qualifying Exam

January 2014 (S. Bell)

Each problem is worth 20 points

Notation: $D_r(a)$ denotes the open disc of radius r about a.

1. Suppose φ is a continuous function on a path γ and $D_r(a)$ is a disc whose closure does not intersect γ . Suppose that z(t), $\alpha \leq t \leq \beta$, is a continuous, piecewise C^1 parameterization of γ . Let L denote the length of γ ,

 $d = \inf\{|z(t) - a| : \alpha \le t \le \beta\}$ denote the distance from a to γ , and $M = \sup\{|\varphi(z(t))| : \alpha \le t \le \beta\}$. Suppose further that $w \in D_r(a)$.

Carefully bound the integral $\int_{\gamma} \frac{\varphi(z)}{(z-w)^2(z-a)} dz$ in terms of M, d, r, and L.

2. Suppose that a_1, a_2, \ldots, a_N are distinct points in the complex plane contained in a circle of radius R_0 where $N \ge 4$. Let Q(z) denote the rational function given by

$$Q(z) = \frac{z^2}{\prod_{n=1}^{N} (z - a_n)}.$$

- a) What is the residue of Q(z) at one of the points a_k ?
- b) State a version of the Residue Theorem that is most relevant to computing $\int_{C_R} Q(z) dz$, where C_R denotes a circle of radius $R > R_0$ about the origin parameterized in the counterclockwise sense.
- c) State the most general Residue Theorem you know.
- d) Prove that the integral in part (b) tends to zero as $R \to \infty$.
- **3.** Suppose that f(z) is analytic on the unit disc and maps the unit disc into itself. If a is a point in the unit disc, how big could |f'(a)| be? Explain.
- 4. Suppose that m and n are positive integers with n > m. Find the point or points in the closed unit disc where $|z^n z^m|$ assumes its maximum value. Find the point or points where it assumes its minimum value.
- 5. Show that if φ is a real valued harmonic function on the unit disc that is continuous up to the boundary such that φ agrees with a real valued polynomial on the unit circle, then φ must be a harmonic real valued polynomial.

Hints: A real valued polynomial in x and y can be rewritten as a polynomial in z = x + iy and $\bar{z} = x - iy$ via $x = \frac{1}{2}(z + \bar{z})$ and $y = \frac{1}{2i}(z - \bar{z})$. Note that $\bar{z} = 1/z$ on the unit circle. Note also that $z = 1/\bar{z}$ there too.