MATH 530 Qualifying Exam

January 2013 (S. Bell)

Each problem is worth 20 points

1. Convert the integral

$$
\int_{0}^{2 \pi} \frac{d \theta}{2+\sin \theta}
$$

into a contour integral of the form $\int_{C} f(z) d z$ where C is the unit circle and f is a rational function, and then use the Residue Theorem to compute the integral.
2. Find the radius of convergence about $z=0$ of the power series

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{2 n}
$$

3. Find a one-to-one conformal map from the quarter disc

$$
\left\{z=r e^{i \theta}: 0<r<1,0<\theta<\pi / 2\right\}
$$

onto the unit disc. You may express your solution as a composition of simpler mappings.
4. Compute

$$
\int_{0}^{\infty} \frac{1}{x^{3}+1} d x
$$

by integrating $f(z)=1 /\left(z^{3}+1\right)$ around the contour that follows the real line from zero to R , then follows the circle $R e^{i t}$ from $t=0$ to $t=2 \pi / 3$, and then follows the line $t e^{i 2 \pi / 3}$ from $t=R$ back to $t=0$. Use the Residue Theorem and let $R \rightarrow \infty$.
5. Suppose that $f(z)$ is an analytic function that maps the unit disc into itself with two distinct fixed points, i.e., with points z_{1} and z_{2} in the unit disc, $z_{1} \neq z_{2}$, such that $f\left(z_{j}\right)=z_{j}$ for $j=1,2$. Prove that $f(z)=z$ for all z.

