MATH 530 Qualifying Exam

August 2013 (S. Bell)
Each problem is worth 20 points

1. Suppose Ω is a domain in the complex plane and $F(z, t)$ is a continuous function on $\Omega \times I$ where $I=[0,1]$ is the unit interval in \mathbb{R}. Suppose further that $F(z, t)$ is analytic in z on Ω for each fixed $t \in I$. Prove that

$$
g(z)=\int_{0}^{1} F(z, t) d t
$$

is analytic on Ω. What can be said if $F(z, t)$ is only assumed to be analytic in $z \in \Omega$ for all rational values of t (when held fixed) in I.
2. Let C_{1} denote the unit circle parametrized in the standard sense. Compute

$$
\int_{C_{1}} \frac{1}{z^{2}+z-\sigma} d z
$$

where σ is a real number satisfying $0<\sigma<2$.
3. Suppose that $f(z)$ is analytic on the upper half plane and maps the upper half plane into the unit disc. Prove that $\left|f^{\prime}(i)\right| \leq \frac{1}{2}$. What can be said if $\left|f^{\prime}(i)\right|=\frac{1}{2}$?
4. Suppose f is analytic on a domain Ω and is not identically zero there. Let $Z_{f}=$ $\{z \in \Omega: f(z)=0\}$ denote the zero set of f. Prove that $\Omega-Z_{f}$ is connected. Is the same true if f is assumed to be a real valued harmonic function?
5. Suppose a_{n} is a sequence of distinct non-zero complex numbers such that

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{-1}<\infty
$$

Let $\mathcal{A}=\left\{a_{n}: n=1, \ldots, \infty\right\}$.
a) Prove that $\sum_{n=1}^{\infty} \frac{1}{z-a_{n}}$ converges to a function $f(z)$ that is analytic on $\mathbb{C}-\mathcal{A}$.
b) For $z \in \mathbb{C}-\mathcal{A}$, let

$$
G(z)=\exp \left(\int_{\gamma_{0}^{z}} f(w) d w\right)
$$

where γ_{0}^{z} is a curve in $\mathbb{C}-\mathcal{A}$ that starts at the origin and ends at z. Prove that G is well defined and analytic on $\mathbb{C}-\mathcal{A}$. Show that G has removable singularities at each of the points a_{n}. Finally, show that the points a_{n} are in fact simple zeroes of G.

