MATH 530 Qualifying Exam

January 2012 (S. Bell)

Each problem is worth 20 points

1. Compute

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\cosh x} d x
$$

Hint: Integrate $f(z)=\frac{e^{i z}}{e^{z}+e^{-z}}$ around the boundary of the rectangle with vertices at $\pm R, \pm R+i \pi$ and let $R \rightarrow \infty$.
2. Suppose that u is a real valued harmonic function on the unit disc. Show that there is a sequence of real valued harmonic polynomials that converges uniformly on compact subsets of the unit disc to u. Given the real valued harmonic function $u=\ln |z|$ on $\mathcal{A}=\{z: 1<|z|<2\}$, is it possible to find a sequence of harmonic polynomials which converges uniformly on compact subsets of \mathcal{A} to u ? Explain.
3. Let \mathcal{F} denote the family of all analytic functions f on the unit disc that map the unit disc into itself with $f(1 / 2)=0$. Find $\sup \{\operatorname{Im} f(0): f \in \mathcal{F}\}$.
4. a) State Rouché's Theorem for the unit disc.
b) Use Rouché's Theorem to prove that a polynomial of degree $N \geq 1$ has N roots (counted with multiplicities) in the complex plane.
5. Prove that

$$
e^{z}+\frac{1}{(z-1)^{3}}+\frac{1}{(z+1)^{6}}
$$

has an analytic cube root on $\mathbb{C}-\{ \pm 1\}$.

