MATH 530 Qualifying Exam August 2012, G. Buzzard, S. Bell

Note: \mathbb{D} is the open unit disk.

- 1. Define $f(z) = \int_0^1 \frac{dt}{1+tz}$.
 - (a) (10 points) Use Morera's Theorem to show that f is analytic in \mathbb{D} .
 - (b) (10 points) Find a power series expansion for f(z) on \mathbb{D} .
- 2. (20 points) Suppose f is entire and that there is some K > 0 so that if $|z| \ge K$, then

$$|\operatorname{Re} f(z)| \ge |\operatorname{Im} f(z)|.$$

Prove that f is constant.

3. (20 points) Suppose f is a holomorphic function (not necessarily bounded) on \mathbb{D} such that f(0) = 0. Prove that the infinite series $\sum_{n=1}^{\infty} f(z^n)$ converges uniformly on compact subsets of \mathbb{D} .

4. (20 points) Define a family \mathcal{F} of functions holomorphic in an open set Ω to be a normal family if every sequence from \mathcal{F} contains either a subsequence that converges uniformly on every compact set $K \subset \Omega$ or a subsequence that tends uniformly to ∞ on every compact set.

Let f be entire, and let \mathcal{F} be the family $\{f(kz) : k \in \mathbb{C}\}$. Also, let Ω be the annulus 1/2 < |z| < 2. Prove that \mathcal{F} is a normal family in Ω if and only if f is a polynomial.

5. Let Ω be a bounded, open, connected set, and suppose that f_1, f_2, \ldots, f_n are holomorphic in Ω and continuous on the closure of Ω . Let $g = |f_1| + |f_2| + \cdots + |f_n|$.

(a) (10 points) Prove that the maximum of g is attained on the boundary of Ω .

(b) (10 points) Prove that if g is constant, then each f_k is also constant.