MATH 530 Qualifying Exam January 2011, G. Buzzard, S. Bell

1. (a) (10 points) Define

$$f(z) := \int_{-\pi}^{\pi} \frac{\cos^2 t}{z - \sin t} dt.$$

Use the difference quotient definition of complex derivative to show that f is holomorphic on $\mathbb{C} - [-1, 1]$ and to write f'(z) as an integral.

(b) (10 points) Can f(z) be extended to [-1, 1] to make f(z) an entire function? If so, describe how to extend f. If not, prove that no such extension exists.

2. (20 points) Let

$$P_n(z) = \sum_{k=0}^n \frac{z^k}{k!}.$$

Prove that for a given R > 0, there exists a positive integer N such that if $n \ge N$, then $P_n(z)$ has exactly n zeroes in $\{z : |z| > R\}$.

3. (20 points) Suppose that f has a pole at z_0 and that g is holomorphic on $\mathbb{C} - \overline{\mathbb{D}}$ (so that g has an isolated singularity at ∞). Give necessary and sufficient conditions on the singularity of g at ∞ so that g(f(z)) has a pole at z_0 and prove that your conditions are necessary and sufficient.

4. (a) (5 points) Suppose f has a pole of order m at z_0 . Use the Laurent series expansion of f around z_0 to derive the formula for the residue of f at z_0 in terms of derivatives of $(z - z_0)^m f(z)$.

(b) (15 points) Compute

$$\int_0^\infty \frac{\ln x}{(x^2+1)^2} dx.$$

5. (20 points) Prove or disprove that there is a sequence of polynomials $\{p_n(z)\}_{n=1}^{\infty}$ so that $p_n(z)$ converges uniformly on the unit circle, $\{z : |z| = 1\}$, to the function $f(z) = (\overline{z})^2$.