# MATH 530 Qualifying Exam 

January 2011, G. Buzzard, S. Bell

1. (a) (10 points) Define

$$
f(z):=\int_{-\pi}^{\pi} \frac{\cos ^{2} t}{z-\sin t} d t
$$

Use the difference quotient definition of complex derivative to show that $f$ is holomorphic on $\mathbb{C}-[-1,1]$ and to write $f^{\prime}(z)$ as an integral.
(b) (10 points) Can $f(z)$ be extended to $[-1,1]$ to make $f(z)$ an entire function? If so, describe how to extend $f$. If not, prove that no such extension exists.
2. (20 points) Let

$$
P_{n}(z)=\sum_{k=0}^{n} \frac{z^{k}}{k!} .
$$

Prove that for a given $R>0$, there exists a positive integer $N$ such that if $n \geq N$, then $P_{n}(z)$ has exactly $n$ zeroes in $\{z:|z|>R\}$.
3. (20 points) Suppose that $f$ has a pole at $z_{0}$ and that $g$ is holomorphic on $\mathbb{C}-\overline{\mathbb{D}}$ (so that $g$ has an isolated singularity at $\infty$ ). Give necessary and sufficient conditions on the singularity of $g$ at $\infty$ so that $g(f(z))$ has a pole at $z_{0}$ and prove that your conditions are necessary and sufficient.
4. (a) (5 points) Suppose $f$ has a pole of order $m$ at $z_{0}$. Use the Laurent series expansion of $f$ around $z_{0}$ to derive the formula for the residue of $f$ at $z_{0}$ in terms of derivatives of $\left(z-z_{0}\right)^{m} f(z)$.
(b) (15 points) Compute

$$
\int_{0}^{\infty} \frac{\ln x}{\left(x^{2}+1\right)^{2}} d x
$$

5. (20 points) Prove or disprove that there is a sequence of polynomials $\left\{p_{n}(z)\right\}_{n=1}^{\infty}$ so that $p_{n}(z)$ converges uniformly on the unit circle, $\{z:|z|=1\}$, to the function $f(z)=(\bar{z})^{2}$.
