MATH 530 Qualifying exam, January 2010, A. Eremenko

Notation: $\Re z$ and $\Im z$ are real and imaginary parts of z, \mathbf{C} is the complex plane, "entire" means analytic in C, "meromorphic function" means a ratio of two analytic functions. Each problem is worth 10 points.

1. Find a conformal map f of the upper half-plane onto the region

$$
\{z \in \mathbf{C}:|z-2 i|<2,|z-i|>1\}
$$

such that $f(0)=2 i, f(\pm 1)=0$.
2. Let f be an analytic function in the closed unit disc which satisfies

$$
|f(0)|+\left|f^{\prime}(0)\right|<\inf \{|f(z)|:|z|=1\} .
$$

Prove that f has at least two zeros (counting multiplicity) in the open unit disc.
3. Let f and g be two entire functions, and $|f(z)| \leq|g(z)|$ for all complex z. Prove that $f=c g$, where c is a constant, or $g=0$.
4. Let f be an analytic function in the unit disc satisfying $|\Re f(z)|<1$ for all z in the unit disc. Prove that $\left|f^{\prime}(0)\right| \leq 2$.
5. Let f and g be two analytic functions in a region D. Suppose that $f(z) \overline{g(z)}$ is real for all $z \in D$. Prove that $f=c g$ where c is a real constant, or $g \equiv 0$.
6. Let f be an analytic function in the region $\{z: 0<|z|<1\}$, and suppose that it satisfies

$$
|f(z)| \leq A+B|z|^{-\alpha}
$$

for some positive numbers A, B and α. Prove that f is meromorphic in the unit disc (that is 0 is either a pole or a removable singularity of f).
7. Let

$$
f=\sum_{n=1}^{\infty} a_{n} z^{n}
$$

be a conformal map from the unit disc onto the square $\{z:|\Re z|<1,|\Im z|<$ $1\}$. Prove that $a_{n}=0$ for all $n \neq 4 k+1, k=0,1,2,1 \ldots$.
8. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\log x}{1+x^{2}}
$$

Hint: integrate $\log z /\left(1+z^{2}\right)$ over the boundary of the region $\{z: \epsilon<|z|<$ $R, \Im z>0\}$.

