MATH 530 Qualifying Exam

August 2010 (S. Bell, A. Eremenko)

Each problem is worth 20 points

1. Compute $\int_{0}^{\infty} \frac{x \sin x}{1+x^{2}} d x$. Hint: Use a rectangular contour and let the dimensions go to infinity one at a time. If you claim that a certain term goes to zero, prove that it does.
2. Find a one-to-one conformal map from the strip $\{z: 0<\operatorname{Im} z<1\}$ onto the half-strip $\{z: 0<\operatorname{Re} z, 0<\operatorname{Im} z<1\}$. (You may express your answer as a composition of more elementary maps.)
3. Prove that the function $f(z)=1 / z$ does not have an analytic antiderivative on $\mathbb{C}-\{0\}$. Find all integers $n=0, \pm 1, \pm 2, \ldots$ such that the function $g(z)=z^{n} e^{1 / z}$ has an analytic antiderivative on $\mathbb{C}-\{0\}$.
4. Find all real valued harmonic functions on the plane that are constant on all vertical lines.
5. It is a fact that, if $n \in \mathbb{Z}$, then

$$
\frac{1}{\sin ^{2} z}-\frac{1}{(z-\pi n)^{2}}
$$

has a removable singularity at $z=\pi n$.
a) Demonstrate this fact in case $n=0$.
b) Prove that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(z-\pi n)^{2}}
$$

converges uniformly on every bounded set after dropping finitely many terms.
c) Finally, use Liouville's Theorem to prove that

$$
\frac{1}{\sin ^{2} z}=\sum_{n=-\infty}^{\infty} \frac{1}{(z-\pi n)^{2}}
$$

