MATH 530 Qualifying Exam

August 2008 (S. Bell, A. Eremenko)

Each problem is worth 25 points

1. Suppose u and v are real valued harmonic functions on a domain Ω.
a) (10 pts.) If u and v agree on a set with a limit point in Ω, does it follow that $u=v$ on all of Ω ? Explain.
b) (15 pts.) If u and v satisfy the Cauchy-Riemann equations on a set with a limit point in Ω, does it follow that $u+i v$ is analytic on Ω ? Explain.
2. Suppose that f is continuous on $\{z:|z| \leq 1\}$ and analytic in $\{z:|z|<1\}$.
a) (15 pts.) Prove that if f vanishes on $\left\{z: z=e^{i \theta}, 0 \leq \theta \leq \frac{\pi}{2}\right\}$, then $f \equiv 0$ on the unit disc. Hint: Where do $f\left(i^{n} z\right)$ vanish for $n=1,2,3$?
b) (10 pts.) Does the same result hold for harmonic functions? Explain.
3. Suppose f and g are analytic in a neighborhood of a point a, and suppose g has a simple zero at a. Find a formula for the residue of $\frac{f(z)}{g(z)^{2}}$ at a in terms of $f(a)$ and derivatives of f and g at a.
4. Let $\log z$ denote the branch of a complex logarithm with branch cut along the negative imaginary axis such that $-\frac{\pi}{2}<\operatorname{Im} \log z<\frac{3 \pi}{2}$. Let C_{r} denote the curve parameterized by $z(t)=r e^{i t}, 0 \leq t \leq \pi$. Prove that $\int_{C_{r}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z$ tends to zero as r tends to ∞ and as r tends to zero. Compute

$$
\int_{0}^{\infty} \frac{\log x}{\left(x^{2}+1\right)^{2}} d x
$$

5. Suppose that f is analytic in a neighborhood of the closed unit disc $\{z:|z| \leq 1\}$. If $|f(z)|<1$ when $|z|=1$, prove that there must be at least one point z_{0} with $\left|z_{0}\right|<1$ such that $f\left(z_{0}\right)=z_{0}$.
6. Find a one-to-one conformal mapping from the region $\{z: \operatorname{Re} z>0\}-[0,1]$ onto the unit disc.
7. Notation: $D_{r}(a)$ denotes the open disc of radius r about a and $C_{r}(a)$ denotes the counterclockwise circle about a parametrized by $z(t)=a+r e^{i t}, 0 \leq t \leq 2 \pi$.

Let Ω be the domain given by $D_{5}(0)$ minus the two closed discs $\overline{D_{1}(-2)}$ and $\overline{D_{1}(2)}$. Suppose f is analytic on Ω and

$$
\int_{C_{2}(-2)} f d z=\pi \quad \text { and } \quad \int_{C_{2}(2)} f d z=e
$$

Draw Ω and draw a closed contour γ in Ω such that

$$
\operatorname{Ind}_{\gamma}(-2)=-2 \quad \text { and } \quad \operatorname{Ind}_{\gamma}(2)=1
$$

What is the value of $\int_{\gamma} f d z$? Explain.
8. There is a famous conformal mapping $f(z)$ of the unit square

$$
\mathcal{S}=\{z: 0<\operatorname{Re} z<1,0<\operatorname{Im} z<1\}
$$

onto the upper half plane which extends continuously up to the boundary of \mathcal{S} and which maps the boundary of S into the real line. Assume that $f(0)=0$. Prove that f extends analytically to a neighborhood of the origin and that the extension has a double zero at zero.

