MATH 530 Qualifying Exam

January 2007, S. Bell, A. Weitsman
Notation: $D_{r}(a)=\{z:|z-a|<r\}$.

1. (20 pts) i) Let t represent a non-zero real number. Find a linear fractional transformation $T(z)$ such that $T(0)=-i, T(t)=1$, and $T(\infty)=i$.
ii) For which values of t does T map the upper half plane onto the unit disc $D_{1}(0)$? Explain.
2. (15 pts) Suppose that f is analytic in a disc $D_{r}(0)=\{z:|z|<r\}, r>0$. Prove that f is an even function (i.e., $f(z)=f(-z))$ for $z \in D_{r}(0)$, if and only if the power series for f centered at the origin has only even powers.
3. (10 pts) Evaluate

$$
\int_{-\infty}^{\infty} \frac{\cos t}{1+t^{4}} d t
$$

4. (20 pts) Suppose that f is analytic in the disc $\mathcal{D}=D_{2}(0)$ and continuous on its closure $\overline{\mathcal{D}}$. Prove that if $|f(z)| \leq|\sin z|$ for all z in the boundary of \mathcal{D}, then $\left|f\left(\frac{\pi}{2}\right)\right| \leq 4 / \pi$.
5. (20 pts) Suppose the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ has a radius of convergence R_{1} with $0<R_{1}<\infty$, and the power series $\sum_{n=0}^{\infty} b_{n} z^{n}$ has a has a radius of convergence R_{2} with $0<R_{2}<\infty$. Suppose further that $b_{n} \neq 0$ for all n. Prove that the power series

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{b_{n}} z^{n}
$$

has a radius of convergence R_{3} satisfying

$$
R_{3} \leq \frac{R_{1}}{R_{2}}
$$

6. (15 pts) Suppose \mathcal{A} is a finite set of points in the complex plane and let \star denote the union of the closed line segments joining each $a \in \mathcal{A}$ to the origin. If f is analytic on $\mathbb{C}-\mathcal{A}$ and is such that

$$
0=\sum_{a \in \mathcal{A}} \operatorname{Res}_{a} f
$$

prove that f has an analytic anti-derivative on $\mathbb{C}-\star$.

