MATH 530 Qualifying Exam

January 2007, S. Bell, A. Weitsman

Notation: $D_r(a) = \{ z : |z - a| < r \}.$

- (20 pts) i) Let t represent a non-zero real number. Find a linear fractional transformation T(z) such that T(0) = −i, T(t) = 1, and T(∞) = i.
 ii) For which values of t does T map the upper half plane onto the unit disc D₁(0)? Explain.
- **2.** (15 pts) Suppose that f is analytic in a disc $D_r(0) = \{z : |z| < r\}, r > 0$. Prove that f is an even function (i.e., f(z) = f(-z)) for $z \in D_r(0)$, if and only if the power series for f centered at the origin has only even powers.
- **3.** $(10 \ pts)$ Evaluate

$$\int_{-\infty}^{\infty} \frac{\cos t}{1+t^4} dt$$

- 4. (20 pts) Suppose that f is analytic in the disc $\mathcal{D} = D_2(0)$ and continuous on its closure $\overline{\mathcal{D}}$. Prove that if $|f(z)| \leq |\sin z|$ for all z in the boundary of \mathcal{D} , then $|f(\frac{\pi}{2})| \leq 4/\pi$.
- 5. (20 pts) Suppose the power series $\sum_{n=0}^{\infty} a_n z^n$ has a radius of convergence R_1 with $0 < R_1 < \infty$, and the power series $\sum_{n=0}^{\infty} b_n z^n$ has a has a radius of convergence R_2 with $0 < R_2 < \infty$. Suppose further that $b_n \neq 0$ for all n. Prove that the power series

$$\sum_{n=0}^{\infty} \frac{a_n}{b_n} z^n$$

has a radius of convergence R_3 satisfying

$$R_3 \le \frac{R_1}{R_2}.$$

6. (15 pts) Suppose \mathcal{A} is a finite set of points in the complex plane and let \star denote the union of the closed line segments joining each $a \in \mathcal{A}$ to the origin. If f is analytic on $\mathbb{C} - \mathcal{A}$ and is such that

$$0 = \sum_{a \in \mathcal{A}} \operatorname{Res}_a f,$$

prove that f has an analytic anti-derivative on $\mathbb{C} - \star$.