## Math 530 <br> Qualifying Examination <br> August 15, 2007 - Profs. Drasin and Weitsman

## (Please write on one side of the paper. Show work and details.)

1.(a) Find two conjugate functions to the harmonic function $u(z)=\log |z|$ with domain $\{|z-1|<1\}$.
(b) Show there is no conjugate function to $u(z)=\log |z|$ in the punctured disk $\{0<|z|<1\}$.
2. Find all conformal self-maps of $\{0<|z|<1\}$.
3. Let $f$ be analytic inside the square $D$ having vertices at $(-2, \pm 2)$ and $(2, \pm 2)$, and suppose $f$ is continuous on $\partial D$. Suppose $\Re e(f(z))=0$ at precisely four points of $\partial D$. Show that $f$ has at most two zeros in $D$. (This is only an upper bound; use the argument principle.)
4. Compute

$$
\int_{0}^{\infty} \frac{\log x}{x^{2}+4} d x
$$

by residues.
5. Let $f(z)=\sum_{0}^{\infty} a_{n} z^{n}, g(z)=\sum_{0}^{\infty} b_{n} z^{n}$ be analytic in $U:\{|z|<1\}$ and continuous on $\partial U$, oriented counterclockwise. Prove that

$$
\frac{1}{2 \pi i} \int_{\partial U} f(\zeta) g(z / \zeta) \frac{d \zeta}{\zeta}=\sum_{0}^{\infty} a_{n} b_{n} z^{n} \quad(z \in U)
$$

(You must justify all steps in your argument.)
6. Let $R$ be the boundary of the rectangle with vertices $(-3, \pm 2),(+3, \pm 2)$, and let

$$
F(z)=\int_{R} z e^{2|\zeta|^{2}} \frac{d \zeta}{(\zeta-z)^{2}}
$$

(a) Prove that $F$ is analytic inside $R$.
(b) Try to obtain as good an upper bound for $\left|F^{\prime \prime}(0)\right|$ as possible.

