Math 530 Qualifying Examination August 15, 2007 – Profs. Drasin and Weitsman

(Please write on one side of the paper. Show work and details.)

- 1.(a) Find two conjugate functions to the harmonic function $u(z) = \log |z|$ with domain $\{|z 1| < 1\}$.
 - (b) Show there is no conjugate function to $u(z) = \log |z|$ in the punctured disk $\{0 < |z| < 1\}.$
- 2. Find all conformal self-maps of $\{0 < |z| < 1\}$.
- 3. Let f be analytic inside the square D having vertices at $(-2, \pm 2)$ and $(2, \pm 2)$, and suppose f is continuous on ∂D . Suppose $\Re e(f(z)) = 0$ at precisely four points of ∂D . Show that f has at most two zeros in D. (This is only an upper bound; use the argument principle.)
- 4. Compute

$$\int_0^\infty \frac{\log x}{x^2 + 4} \, dx$$

by residues.

5. Let $f(z) = \sum_{0}^{\infty} a_n z^n$, $g(z) = \sum_{0}^{\infty} b_n z^n$ be analytic in $U : \{|z| < 1\}$ and continuous on ∂U , oriented counterclockwise. Prove that

$$\frac{1}{2\pi i} \int_{\partial U} f(\zeta) g(z/\zeta) \frac{d\zeta}{\zeta} = \sum_{0}^{\infty} a_n b_n z^n \qquad (z \in U)$$

(You must justify all steps in your argument.)

6. Let R be the boundary of the rectangle with vertices $(-3, \pm 2), (+3, \pm 2)$, and let

$$F(z) = \int_{R} z e^{2|\zeta|^2} \frac{d\zeta}{(\zeta - z)^2}.$$

- (a) Prove that F is analytic inside R.
- (b) Try to obtain as good an upper bound for |F''(0)| as possible.