QUALIFYING EXAMINATION JANUARY 2006 MATH 530 - Prof. Weitsman

1. (20) Find the radii of convergence of the following.

$$i) \sum_{n=0}^{\infty} \frac{1}{(1+2i)^n} z^n \qquad \qquad ii) \sum_{n=0}^{\infty} \frac{z^{n^2}}{n!}$$

2. (20) Show that

$$\int_{-\infty}^{\infty} \frac{x \sin(2x)}{x^4 + 16} dx = \frac{\pi e^{-2\sqrt{2}} \sin(2\sqrt{2})}{4}.$$

Show all work.

3. (20) Expand
$$f(z) = \frac{1}{z(z+2)}$$
 as a Laurent series

i) for 0 < |z| < 2,

ii) for
$$|z - 3| < 3$$
.

- 4. (20) Prove that all roots of the equation $z^6 5z^2 + 10 = 0$ lie in the annulus $\{z : 1 < |z| < 2\}$.
- 5. (20) Find all linear fractional transformations T(z) which map the upper half plane $H^+ = \{z : \Im mz > 0\}$ onto the unit disk $U = \{z : |z| < 1\}$ such that T(i) = 0.
- 6. (20) Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be analytic in the unit disk $U = \{z : |z| < 1\}$ with f(0) = 0and f'(0) = 1. Prove that if $\sum_{n=2}^{\infty} n|a_n| \le 1$, then f is one-to-one in U.
- 7. (20) Suppose that f(z) is analytic in the disk $\{z : |z| < R\}$ (R > 1) except for a simple pole at z = 1 with residue -1. If its Taylor expansion in the unit disk is

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

prove that $a_n \to 1$ as $n \to \infty$.