MATH 530 Qualifying Exam

August 2006

1. (10 pts) Let f be analytic in the punctured disk $D' = \{z : 0 < |z - z_0| < r\}$. Prove that if

$$|f''(z)| \le \frac{1}{|z - z_0|^2}$$

for all $z \in D'$, then f has a removable singularity at z_0 .

- **2.** (20 pts) Adapt the proof of Schwarz's lemma to prove the following. Let f be analytic in the unit disk $U = \{z : |z| < 1\}$ having zeros at z = 1/2 and z = -1/2, and such that |f(z)| < 1 for all $z \in U$. Prove that $|f(i/2)| \le 8/17$.
- **3.** i) (10 pts) Suppose that the functions f_1, f_2, f_3, \ldots are analytic in a domain Ω , and the sequence converges uniformly on all compact subsets of Ω to a function f. Prove that the sum $\sum_{n=1}^{\infty} \frac{f_n(z)}{2^n}$ converges to a function g which is analytic on Ω .
 - ii) (10 pts) Suppose that the functions in i) satisfy the condition

$$|f_n(z)| \le 10, \quad n = 1, 2, \dots$$

throughout Ω , and recall that g(z) is the sum in i). Prove that if $g(z_0) = 10$ for some $z_0 \in \Omega$, then $g(z) \equiv 10$ in Ω .

- **4.** i) (10 pts) Determine the set of points in the complex plane where $\sin z$ is pure real.
 - ii) (10 pts) Determine the set of points in the complex plane where $|e^{z^2}| > 1$.
- **5.** (10 pts) Let $C = \{z : |z| = 5\}$, traversed once counterclockwise. Compute the contour integral

$$\int_C \frac{e^{1/z} + \sin z}{z} \, dz.$$

6. (10 pts) Let f be analytic in a domain which contains the closed disk $\{z : |z| \le 2\}$, and let C be its boundary $\{z : |z| = 2\}$ traversed once counterclockwise.

Prove that
$$\operatorname{Re} f(0) = \frac{1}{2\pi i} \int_C \frac{\operatorname{Re} f(z)}{z} dz$$

7. $(10 \ pts)$ Evaluate

$$\int_{1-i\infty}^{1+i\infty} \frac{e^z}{1+z^2} \, dz,$$

i.e., along the line $\{z : \text{Re } z = 1\}$ in the direction of increasing imaginary part.