QUALIFYING EXAMINATION AUGUST 2004 MATH 530 - Prof. Bell

Each problem is worth 20 points Notation: $D_r(a) = \{z : |z - a| < r\}$

- 1. How many zeros does the function $f(z) = e^z + z^{11} + 2004$ have in the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}$? Explain.
- 2. State the Schwarz Lemma. Use it to prove that if f is a one-to-one analytic map of the unit disc onto itself such that f(0) = 0, then $f(z) = \lambda z$ for some constant λ with $|\lambda| = 1$.
- **3.** Suppose that f(z) is analytic in a neighborhood of the origin and

$$\sum_{n=1}^{\infty} f^{(n)}(0)$$

converges. Prove that f(z) extends to be an entire function.

- **4.** Let f be an entire function such that $|f(z)| \leq 2004 + \sqrt{|z|}$ for all $z \in \mathbb{C}$. Prove that f is constant.
- 5. Suppose that f is a non-constant analytic function on an open set Ω containing the closed unit disc. If $|f(z)| \ge 1$ whenever |z| = 1 and there exists a point $z_0 \in D_1(0)$ such that $|f(z_0)| < 1$, show that $f(\Omega)$ contains $D_1(0)$.
- 6. Evaluate

$$\int_0^\infty \frac{\sin x}{x} \ dx$$

by complex variable methods.

7. Suppose that f(z) is analytic on a simply connected domain Ω minus two points a_1 and a_2 in Ω . If the residue of f at a_1 is R_1 and the residue of f at a_2 is R_2 , prove that there is an analytic function F(z) on $\Omega - \{a_1, a_2\}$ such that

$$F'(z) = f(z) - \frac{R_1}{z - a_1} - \frac{R_2}{z - a_2}.$$