QUALIFYING EXAMINATION

AUGUST 2004
MATH 530-Prof. Bell

Each problem is worth 20 points
Notation: $D_{r}(a)=\{z:|z-a|<r\}$

1. How many zeros does the function $f(z)=e^{z}+z^{11}+2004$ have in the annulus $\{z \in \mathbb{C}: 1<|z|<2\}$? Explain.
2. State the Schwarz Lemma. Use it to prove that if f is a one-to-one analytic map of the unit disc onto itself such that $f(0)=0$, then $f(z)=\lambda z$ for some constant λ with $|\lambda|=1$.
3. Suppose that $f(z)$ is analytic in a neighborhood of the origin and

$$
\sum_{n=1}^{\infty} f^{(n)}(0)
$$

converges. Prove that $f(z)$ extends to be an entire function.
4. Let f be an entire function such that $|f(z)| \leq 2004+\sqrt{|z|}$ for all $z \in \mathbb{C}$. Prove that f is constant.
5. Suppose that f is a non-constant analytic function on an open set Ω containing the closed unit disc. If $|f(z)| \geq 1$ whenever $|z|=1$ and there exists a point $z_{0} \in D_{1}(0)$ such that $\left|f\left(z_{0}\right)\right|<1$, show that $f(\Omega)$ contains $D_{1}(0)$.
6. Evaluate

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x
$$

by complex variable methods.
7. Suppose that $f(z)$ is analytic on a simply connected domain Ω minus two points a_{1} and a_{2} in Ω. If the residue of f at a_{1} is R_{1} and the residue of f at a_{2} is R_{2}, prove that there is an analytic function $F(z)$ on $\Omega-\left\{a_{1}, a_{2}\right\}$ such that

$$
F^{\prime}(z)=f(z)-\frac{R_{1}}{z-a_{1}}-\frac{R_{2}}{z-a_{2}}
$$

