QUALIFYING EXAMINATION JANUARY 2003 MATH 530 - Prof. Bell

- 1. (10 pts) Suppose P and Q are polynomials and that the degree of P is at least two less than the degree of Q. Prove that the sum of all the residues of P/Q in the complex plane is zero.
- **2.** (20 pts)
 - a) Prove that an uncountable subset of a domain in the complex plane must have a limit point in the domain.
 - b) Prove that an analytic function on a domain can have at most countably many zeroes if it is not identically zero.
 - c) Does there exist a non-constant analytic function on the unit disc with infinitely many zeroes on the unit disc? Prove or give a counterexample.
- **3.** (20 pts) Prove that if a harmonic function on a domain vanishes on an open subset of the domain, then it is identically zero. Can it vanish on a set with a limit point in the domain and not be identically zero?
- 4. (20 pts) Suppose that f(z) has an essential singularity at z = a. Prove that there is a sequence of points z_n tending to a such that $(z_n a)^n f(z_n)$ tends to ∞ .
- 5. (10 pts) Does there exist a sequence of polynomials $P_n(z)$ which converges uniformly to 1/z on $\{z : |z| = 1\}$? Explain.
- 6. (20 pts) Suppose that f is a continuous complex valued function on a domain Ω . Prove that if f^2 and f^3 are analytic on Ω , then f itself must be analytic.