QUALIFYING EXAMINATION August 1999 MATH 530 - Prof. Bell

Notation: $D_r(a)$ denotes the disk, $\{z \in \mathbb{C} : |z - a| < r\}$.

1. (20 pts) Find the smallest integer n such that there is no $z \in \mathbb{C}$ with

$$z^{11} + z^5 + 8z + 1999 = 0$$

and $|z| \ge n$. Explain. $(3^{11} = 177147, 3^5 = 243, 2^{11} = 2048, 2^5 = 32.)$

- **2.** (20 pts) Let $f : \mathbb{C} \{0, 1\} \to \mathbb{C}$ be an analytic function such that $f(z) = \sum_{-\infty}^{\infty} a_n z^n$ for |z| > 1, where $a_n = 1$ for n < 0 and $a_n = 1/n!$ for $n \ge 0$. Determine what type of singularity f has at 0, 1 and ∞ .
- **3.** (20 pts) Assume that F is a one-to-one analytic mapping of the square

$$\{z : -1 < \text{Re } z < 1, -1 < \text{Im } z < 1\}$$

onto the unit disk such that F(0) = 0. Prove that F(iz) = iF(z) for all z.

4. (20 pts) Let $f(z) = \sum_{n=0}^{\infty} z^{n!}$. Show that the radius of convergence of this power series is one. Let u denote a root of unity. Show that

$$\lim_{r \to 1-} f(ru) = \infty.$$

Let $\Omega = D_1(0) \cup D_{\epsilon}(1)$. Is there an $\epsilon > 0$ and a meromorphic function F on Ω such that F = f on the unit disk? Explain.

5. (20 pts) Let \mathcal{F} denote the family of all analytic maps f of the unit disk to itself for which f(1/2) = 0. Find

$$\sup_{f\in\mathcal{F}} \{ \operatorname{Im} f(0) \}.$$

Explain.