QUALIFYING EXAMINATION

August 1999
MATH 530 - Prof. Bell
Notation: $D_{r}(a)$ denotes the disk, $\{z \in \mathbb{C}:|z-a|<r\}$.

1. (20 pts) Find the smallest integer n such that there is no $z \in \mathbb{C}$ with

$$
z^{11}+z^{5}+8 z+1999=0
$$

and $|z| \geq n$. Explain. $\left(3^{11}=177147,3^{5}=243,2^{11}=2048,2^{5}=32.\right)$
2. (20 pts) Let $f: \mathbb{C}-\{0,1\} \rightarrow \mathbb{C}$ be an analytic function such that $f(z)=\sum_{-\infty}^{\infty} a_{n} z^{n}$ for $|z|>1$, where $a_{n}=1$ for $n<0$ and $a_{n}=1 / n$! for $n \geq 0$. Determine what type of singularity f has at 0,1 and ∞.
3. (20 pts) Assume that F is a one-to-one analytic mapping of the square

$$
\{z:-1<\operatorname{Re} z<1,-1<\operatorname{Im} z<1\}
$$

onto the unit disk such that $F(0)=0$. Prove that $F(i z)=i F(z)$ for all z.
4. (20 pts) Let $f(z)=\sum_{n=0}^{\infty} z^{n!}$. Show that the radius of convergence of this power series is one. Let u denote a root of unity. Show that

$$
\lim _{r \rightarrow 1-} f(r u)=\infty
$$

Let $\Omega=D_{1}(0) \cup D_{\epsilon}(1)$. Is there an $\epsilon>0$ and a meromorphic function F on Ω such that $F=f$ on the unit disk? Explain.
5. (20 pts) Let \mathcal{F} denote the family of all analytic maps f of the unit disk to itself for which $f(1 / 2)=0$. Find

$$
\sup _{f \in \mathcal{F}}\{\operatorname{Im} f(0)\} .
$$

Explain.

