MATH 530 Qualifying Exam

January 1998

Notation: $D_{r}(a)$ denotes the disk, $\{z \in \mathbb{C}:|z-a|<r\}$.

1. (15 pts) Evaluate the integral $\int_{-\infty}^{0} \frac{x^{2}}{x^{4}+x^{2}+1} d x$.
2. (15 pts) Find a one-to-one analytic map from $D_{1}(0) \cap\{x+i y: x, y>0\}$ onto $D_{1}(0)$.
3. (25 pts) Let \mathcal{F} denote the set of analytic functions f on $D_{1}(0)$ such that $|f(z)|<1$ for all $z \in D_{1}(0), f(0)=0$, and $f^{\prime}(0)=0$. Prove that if $f \in \mathcal{F}$, then $|f(z)| \leq|z|^{2}$ for all $z \in D_{1}(0)$. Let $M=\sup \left\{\left|f^{\prime \prime}(0)\right|: f \in \mathcal{F}\right\}$. Find all functions, if any, in \mathcal{F} such that $\left|f^{\prime \prime}(0)\right|=M$.
4. (15 pts) How many zeroes does the polynomial

$$
z^{1998}+z+2001
$$

have in the first quadrant? Explain your answer.
5. (15 pts) Prove that a harmonic function cannot have an isolated zero.
6. (15 pts) Let $C_{1}(0)$ denote the unit circle $\{z \in \mathbb{C}:|z|=1\}$ and let f be a function that is analytic on $D_{r}(0)$ for some $r>1$. Prove that if $f\left(C_{1}(0)\right) \subset C_{1}(0) \backslash\{1\}$, then f is a constant function.

