QUALIFYING EXAMINATION August 1998 MATH 530 - Profs. Bell/Catlin

Notation: $D_r(a)$ denotes the disk, $\{z \in \mathbb{C} : |z - a| < r\}$.

- **1.** (10 pts) Find all entire functions f such that the real part of f'(z) is non-negative at every point $z \in \mathbb{C}$.
- 2. (15 pts) Evaluate the integral

$$\int_0^\infty \frac{\sqrt{x}}{x^2 + 1} \, dx.$$

- **3.** (15 pts) Suppose that f is a continuous complex valued function on the unit disk that is holomorphic on the sets $\{\text{Im } z > 0\} \cap D_1(0)$ and $\{\text{Im } z < 0\} \cap D_1(0)$. Prove f is holomorphic on all of $D_1(0)$. Is the analogue of this problem for harmonic functions true?
- **4.** (15 pts) Find a one-to-one analytic map from $\{x + iy : 2 < y < 3, x < 1\}$ onto $\{x + iy : 5 < y < 8\}$.
- 5. (15 pts) Let f be a non-constant entire function such that f(n) = 1998 for every $n \in \mathbb{Z}$. Can f have at ∞ :
 - a) an essential singularity,
 - **b**) a pole,
 - c) a removable singularity?
- **6.** (15 pts) Suppose that f is analytic on $D_1(0)$ and that |f(z)| < 1 for all $z \in D_1(0)$. Prove that if $f(0) = a \neq 0$, then f has no zeroes in the disk $D_{|a|}(0)$.
- 7. (15 pts) Show that a one-to-one entire function must be of the form az + b for some complex constants a and b with $a \neq 0$.