QUALIFYING EXAMINATION

August 1998
MATH 530 - Profs. Bell/Catlin

Notation: $D_{r}(a)$ denotes the disk, $\{z \in \mathbb{C}:|z-a|<r\}$.

1. (10 pts) Find all entire functions f such that the real part of $f^{\prime}(z)$ is non-negative at every point $z \in \mathbb{C}$.
2. (15 pts) Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sqrt{x}}{x^{2}+1} d x
$$

3. (15 pts) Suppose that f is a continuous complex valued function on the unit disk that is holomorphic on the sets $\{\operatorname{Im} z>0\} \cap D_{1}(0)$ and $\{\operatorname{Im} z<0\} \cap D_{1}(0)$. Prove f is holomorphic on all of $D_{1}(0)$. Is the analogue of this problem for harmonic functions true?
4. (15 pts) Find a one-to-one analytic map from $\{x+i y: 2<y<3, x<1\}$ onto $\{x+i y: 5<y<8\}$.
5. (15 pts) Let f be a non-constant entire function such that $f(n)=1998$ for every $n \in \mathbb{Z}$. Can f have at ∞ :
a) an essential singularity,
b) a pole,
c) a removable singularity?
6. (15 pts) Suppose that f is analytic on $D_{1}(0)$ and that $|f(z)|<1$ for all $z \in D_{1}(0)$. Prove that if $f(0)=a \neq 0$, then f has no zeroes in the disk $D_{|a|}(0)$.
7. (15 pts) Show that a one-to-one entire function must be of the form $a z+b$ for some complex constants a and b with $a \neq 0$.
