MA 530
 Qualifying Examination
 January 1997

Name:

1. Let r be the radius of convergence of $\sum a_{n} z^{n}$, and ρ be the radius of convergence of $\sum b_{n} z^{n}$. Set $c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0}$ for $n=0,1, \ldots$ What can the radius of convergence R of the series $\sum c_{n} z^{n}$ be? Describe all possibilities.
2. For what R does there exist a one-to-one analytic map f_{R} from the left half-plane $\{z \in \mathbb{C}: \Re e z<0\}$ onto the disk $\mathcal{D}_{R}=\{z \in \mathbb{C}:|z|<R\}$ such that $f_{R}(-3)=0$ and $f_{R}^{\prime}(-3)=1+i$? Find f_{R} for those R for which it exists and prove that for all other R 's it does not exist.
3. How many zeros does the polynomial $z^{10}-z^{3}+3$ have in the first quadrant?
4. Find and classify all isolated singularities in $\overline{\mathbb{C}}$ of the following functions:
a) $\frac{1}{e^{z}-1}-\frac{1}{z}$
b) $e^{z-\frac{1}{z}}$
c) $z\left(e^{\frac{1}{z}}-1\right)$
d) $e^{\tan \frac{1}{z}}$
e) $z^{2} \sin \frac{z}{z+1}$
5. Evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{4}}{x^{6}+1} d x
$$

6. Find all possible values of

$$
\int_{0}^{1} \frac{d z}{1+z^{2}}
$$

for all paths going from 0 to 1 such that the integral converges.
7. Let P be a harmonic polynomial of two real variables. Show that the conjugate harmonic function is also a polynomial.
8. Find the infinite product expansion for $e^{z}-1$.

