MA 530 Qualifying Examination January 1997

Name:

- 1. Let r be the radius of convergence of $\sum a_n z^n$, and ρ be the radius of convergence of $\sum b_n z^n$. Set $c_n = a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0$ for $n = 0, 1, \ldots$. What can the radius of convergence R of the series $\sum c_n z^n$ be? Describe all possibilities.
- 2. For what R does there exist a one-to-one analytic map f_R from the left half-plane $\{z \in \mathbb{C} : \Re e \ z < 0\}$ onto the disk $\mathcal{D}_R = \{z \in \mathbb{C} : |z| < R\}$ such that $f_R(-3) = 0$ and $f'_R(-3) = 1 + i$? Find f_R for those R for which it exists and prove that for all other R's it does not exist.
- 3. How many zeros does the polynomial $z^{10} z^3 + 3$ have in the first quadrant?
- 4. Find and classify all isolated singularities in $\overline{\mathbb{C}}$ of the following functions:
 - a) $\frac{1}{e^{z}-1} \frac{1}{z}$ b) $e^{z-\frac{1}{z}}$ c) $z(e^{\frac{1}{z}}-1)$ d) $e^{\tan \frac{1}{z}}$ e) $z^{2} \sin \frac{z}{z+1}$
- 5. Evaluate the integral

$$\int_0^\infty \frac{x^4}{x^6+1} \, dx.$$

6. Find all possible values of

$$\int_0^1 \frac{dz}{1+z^2}$$

for all paths going from 0 to 1 such that the integral converges.

- 7. Let P be a harmonic polynomial of two real variables. Show that the conjugate harmonic function is also a polynomial.
- 8. Find the infinite product expansion for $e^z 1$.