MATH 530 Qualifying Exam

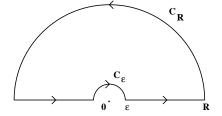
August 1997

Notation: $D_1(0)$ denotes the unit disk, $\{z \in \mathbb{C} : |z| < 1\}$.

- 1. Give a careful statement and proof of *exactly* one of the following theorems:
 - The Fundamental Theorem of Algebra
 - The Partial Fractions Decomposition Theorem
- 2. Find an analytic function that maps $\Omega = D_1(0) [0, 1]$ one-to-one and onto the vertical strip $S = \{z \in \mathbb{C} : 0 < \text{Re } z < 1\}$. Is the mapping you found unique? Explain.
- **3.** Prove the following mini-version of the Mittag-Leffler Theorem: There exists an analytic function f(z) on $\mathbb{C} \{n : n = 1, 2, 3, ...\}$ such that f(z) has a simple pole at z = n with principle part 1/(z n) for each $n \in \mathbb{N}$. (You can use any theorems from Ahlfors *except* the Mittag-Leffler Theorem.)
- 4. Prove that an analytic function that maps the unit disk into itself must satisfy $|f'(0)| \leq 1$.
- 5. Evaluate

$$\int_0^\infty \frac{\sin x}{x} \, dx$$

Hint: Integrate e^{iz}/z around the contour below. (Prove any limits you use).



6. Suppose that f is an analytic function on the complex plane minus the two points ± 1 . Let γ_1 denote the curve given by $z_1(t) = 1 + e^{it}$ where $0 \le t \le 2\pi$ and let γ_2 denote the curve given by $z_2(t) = -1 + e^{it}$ where $0 \le t \le 2\pi$. Suppose that

$$\int_{\gamma_j} f(z) \, dz = 0$$

for j = 1, 2. First, explain why

$$\int_{\gamma} f(z) \, dz = 0$$

for any closed curve in $\mathbb{C} - \{\pm 1\}$. Next, prove from first principles that f has an analytic antiderivative on $\mathbb{C} - \{\pm 1\}$, i.e., show that there is an analytic function g on $\mathbb{C} - \{\pm 1\}$ such that g' = f.