Name: \qquad

1. Find all singular points of the following functions and classify them:
a) $\cot z-\frac{1}{z}$
b) $\sin \left(\exp \frac{1}{z}\right)$
c) $\frac{1}{z^{2}-1} \cos \frac{\pi z}{z+1}$
2. Find the Laurent expansion of

$$
\frac{1}{(z-1)^{2}(z+2)}
$$

in the annulus $1<|z|<2$.
3. Evaluate the residue

$$
\operatorname{Res}_{\infty} \ln \frac{z-1}{z+1}
$$

for each branch of this function which is defined in a neighborhood of ∞.
4. Find a conformal map of the following region onto the upper half-plane:
(horizontal strip of width 2π, symmetric with respect to \mathbb{R}, from which the positive ray is removed).

5 . For all real t evaluate the integral

$$
\int_{1-i \infty}^{1+i \infty} \frac{e^{t z}}{z^{2}+1} d z
$$

(the path of integration is the vertical line $\{z: \operatorname{Re} z=1\}$).
6. Show that the series

$$
\sum_{n=0}^{\infty} \frac{\cos n z}{n!}
$$

is uniformly convergent on every compact in \mathbb{C}.

