Name: \qquad

1. Classify the singularities at 0 :

$$
\text { a) } \exp \left(\frac{\sin z}{z}\right), \quad \text { b) } \sum_{n=0}^{\infty} n(z-1)^{n}, \quad \cos \left(\frac{1}{e^{z}-1}\right)
$$

2. Evaluate the integrals

$$
\text { a) } \int_{C} \sin \frac{1}{z} d z \quad \text { b) } \int_{C} \sin ^{2} \frac{1}{z} d z
$$

where C is the circle $|z|=2$.
3. Describe the full preimage of the segment $[-2,2]$ under $\cos z$. Make a picture.
4. Find a conformal map of the upper half-plane, from which the vertical ray $[i, \infty)$ is removed, onto the upper half-plane.
5. Let f be a meromorphic function in the unit disc D having only one simple pole at $z_{0} \in D, z_{0} \neq 0$. Let $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots$ in a neighborhood of 0 . Prove the equality

$$
z_{0}=\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}
$$

6. Let f be a holomorphic function in the unit disc D.
a) Prove that if f is unjective in D then $f^{\prime}(z) \neq 0$ for all $z \in D$.
b) Show that the converse is not true: there is a holomorphic function f in D whose derivative has no zeros in D but f is not injective in D.
