QUALIFYING EXAMINATION

JANUARY 1995
MATH 530

1. Let $f(z)=a_{1} z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ be an analytic function at 0 and $a_{2} \neq 0$. Express the residue of $1 / f^{2}$ at 0 in terms of a_{i}.

Remark: Don't forget the case $a_{1}=0$.
2. Find an analytic function f such that

$$
|f(x+i y)|=e^{x y} .
$$

3. Find all complex solutions of the equation $\cos z=2$.
4. Find the conformal mapping φ of the following domain onto the unit disk with $\varphi(0)=0, \quad \varphi\left(\pm \frac{1}{2}\right)= \pm 1$.
5. a) How many roots does this equation

$$
z^{4}+z+5=0
$$

have in the first quadrant.
b) How many of them have argument between $\frac{\pi}{4}$ and $\frac{\pi}{2}$?
6. Compute

$$
\int_{|z|=1} e^{z} z^{-n} d z
$$

where n is an integer.
7. Show that an isolated singularity of f cannot be a pole of $\sin f$.

