QUALIFYING EXAMINATION
 JANUARY 1994

MATH 530

Please answer each question on a separate sheet of paper!

1. (a) The function $f(z)=\frac{4}{(1+z)(3-z)}$ has Laurent series
(I) $\sum_{k=0}^{\infty}\left(1+\frac{(-1)^{k}}{3^{k+1}}\right)(z-2)^{k}$
(II) $\quad \sum_{k=-\infty}^{-1}\left(-1+(-3)^{-(k+1)}\right)(z-2)^{k}$
(III) $\quad \sum_{k=-\infty}^{-1}-(z-2)^{k}+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{3^{k+1}}(z-2)^{k}$

Find the sets of absolute convergence for each of these series.
(b) Suppose the function f is analytic in the plane except for simple poles at $z=-1$ and $z=3$ and has Laurent series
(I) $\sum_{k=0}^{\infty} a_{k}(z-2)^{k}$
(II) $\sum_{k=-\infty}^{-1} b_{k}(z-2)^{k}$
(III) $\sum_{k=-\infty}^{\infty} c_{k}(z-2)^{k}$

Letting $\Gamma=\{z:|z-3|=1\}$ oriented counterclockwise, express the integral

$$
\int_{\Gamma} f(z) d z
$$

in terms of the coefficients of the Laurent series above, and justify your answer.
2. The function g is analytic in the plane except for four poles, including poles at $-1,2$, and $3+4 i$. Moreover, g is real-valued on the interval $\{z: \operatorname{Im}(z)=0,-1<z<2\}$ of the real axis.
(a) Prove that g is real-valued on the whole real axis except for its poles.
(b) Find the location of the fourth pole and justify your answer.
3. Suppose there is $R>1$ so that $h(z)$ is analytic in the disk $\{z:|z|<R\}$.

Prove that if $|h(z)| \leq 1$ for $|z| \leq 1$ and $h(0)=0$ and $h(1)=1$, then $\left|h^{\prime}(1)\right| \geq 1$.
(Hint: you may wish to consider $\lim _{r \rightarrow 1^{-}}(h(1)-h(r)) /(1-r)$.)
4. (a) Express the arctangent function in terms of the logarithm.
(b) Let $A(z)$ be the branch of the arctangent function that is analytic except for $\{z: \operatorname{Re}(z)=0,|\operatorname{Im}(z)| \geq 1\}$ and that has $A(0)=\pi$. Find, justifying your work,

$$
\lim _{t \rightarrow 0^{+}} \operatorname{Re}(A(t+i))
$$

(where, as usual, " $t \rightarrow 0^{+}$" means t is positive and real as it approaches 0).
5. Use the residue theorem to evaluate

$$
\int_{0}^{\infty} \frac{t}{4+t^{4}} d t
$$

Justify your answer by careful statements of your contours and estimates.

