QUALIFYING EXAMINATION
 AUGUST 1994
 MATH 530

All answers must be justified and work must be shown.

1. Let f be an analytic function in the open unit disk, $|f(z)| \leq 1,|z|<1$. Prove that $\left|f^{(n)}(0)\right| \leq n!; \quad n=0,1,2, \ldots$.
2. Let f be a non-constant analytic function in a neighborhood N of the real axis \mathbb{R}. Assume that

$$
\operatorname{Im} f(z) \cdot \operatorname{Im} z \geq 0, \quad z \in N
$$

a) Show that $f^{\prime}(z) \neq 0, \quad z \in \mathbb{R}$.
b) Show that actually $f^{\prime}(z)>0, \quad z \in \mathbb{R}$.
3. Evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{\alpha-1} d x}{x+t}
$$

where $0<\alpha<1$ and $t>0$.
4. Find the one-to-one conformal map of the region $\{z: \operatorname{Re} z>0$, $\operatorname{Im} z>0$, $|z|>1\}$ onto the upper half-plane, such that $i \mapsto 0,1 \mapsto 1$ and $\infty \mapsto \infty$.
5. How many solutions (counting multiplicity) on the Riemann sphere can have the equation

$$
f(z)-z=0
$$

where f is a rational function of degree $d \geq 2$.
(The degree of $f=P / Q$ is defined as $\max \{\operatorname{deg} P, \operatorname{deg} Q\}$, where P and Q are polynomials without common factor.)
6. Describe the set in the complex plane where $\cos z$ is real. Draw the picture.
7. Find the residus of $\cot ^{2} z$ at all isolated singular points.

