1. Show that the Cauchy problem

$$
\begin{array}{ll}
y u_{x}+x u_{y}=0 & \text { in } U=\left\{(x, y) \in \mathbb{R}^{2}: x>0\right\} \\
u(x, 0)=e^{-x^{2}} & \text { for any } x>0
\end{array}
$$

has a classical solution in all of U. Show, however, that the solution is not unique.
[Hint. Does every projected characteristic intersect $\Gamma=\{(x, 0): x>0\}$?]
2. Let $\Omega_{1} \subset \Omega_{2}$ be two bounded domains with smooth boundaries and functions $u_{k} \in C^{2}\left(\bar{\Omega}_{k}\right)$ and constants $\lambda_{k}, k=1,2$, are such that

$$
u_{k}>0 \quad \text { in } \Omega_{k}, \quad-\Delta u_{k}=\lambda_{k} u_{k} \quad \text { in } \Omega_{k}, \quad u_{k}=0 \quad \text { on } \partial \Omega_{k}, \quad k=1,2 .
$$

Prove that
(a) $\lambda_{k}>0, k=1,2$
(b) $\lambda_{2} \leq \lambda_{1}$.
[Hint. Apply a Gauss-Green formula in an appropriate domain and use that $\partial u_{k} / \partial \nu$ has a sign on $\partial \Omega_{k}$. You have to justify the latter fact.]
3. Let u be a C^{2} solution of the initial value problem

$$
\begin{aligned}
u_{t t}-\Delta u=0 & \text { in } \mathbb{R}^{3} \times(0, \infty), \\
u=g(x), \quad u_{t}=h(x) & \text { on } \mathbb{R}^{3} \times\{0\},
\end{aligned}
$$

where g, h are smooth functions with compact support. Prove that

$$
E(t):=\int_{\mathbb{R}^{3}}|u(x, t)|^{p} d x \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

for any $p>2$.
[Hint: Identify the support of $u(\cdot, t)$ as well as prove a pointwise bound $|u(x, t)| \leq C / t$.]
4. Let u be a bounded solution of the initial value problem for the heat equation

$$
\begin{aligned}
\Delta u-u_{t}=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u(\cdot, 0)=g & \text { on } \mathbb{R}^{n}
\end{aligned}
$$

with $g \in C_{0}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\int_{\mathbb{R}^{n}} g(y) d y>0
$$

Prove that for any $R>0$, there exists $T=T_{R}>0$ such that

$$
u(x, t)>0 \quad \text { for all }|x| \leq R, t \geq T
$$

[Hint: Show that

$$
(4 \pi t)^{n / 2} u(x, t) \rightarrow \int_{\mathbb{R}^{n}} g(y) d y \quad \text { as } t \rightarrow \infty
$$

uniformly for $|x| \leq R$.]
5. Consider the square $\Omega=(-1,1) \times(-1,1) \subset \mathbb{R}^{2}$ and let $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ solve

$$
\Delta u=-1 \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

(a) Show that $u>0$ in Ω
(b) Show that $u\left(x_{2}, x_{1}\right)=u\left(x_{1}, x_{2}\right)$ and $u\left(\pm x_{1}, \pm x_{2}\right)=u\left(x_{1}, x_{2}\right)$ for any $x=\left(x_{1}, x_{2}\right) \in \Omega$.
(c) Show that

$$
u_{x_{i}} \leq 0 \quad \text { in } \bar{\Omega} \cap\left\{x_{i} \geq 0\right\}, \quad i=1,2
$$

In particular,

$$
u_{x_{1}}, u_{x_{2}} \leq 0 \quad \text { in } \bar{\Omega} \cap\left\{x_{1} \geq 0, x_{2} \geq 0\right\}
$$

[Hint: Since $u_{x_{i}}$ are harmonic, it is enough to show that $u_{x_{i}} \leq 0$ on $\partial\left(\Omega \cap\left\{x_{i}>0\right\}\right)$; use both (a) and (b)]
(d) Use (b) and (c) to conclude that

$$
u(0,0)=\sup _{\Omega} u
$$

