1. Show that the Cauchy problem

$$yu_x + xu_y = 0$$
 in $U = \{(x, y) \in \mathbb{R}^2 : x > 0\},$
 $u(x, 0) = e^{-x^2}$ for any $x > 0,$

has a classical solution in all of U. Show, however, that the solution is not unique.

[*Hint.* Does every projected characteristic intersect $\Gamma = \{(x, 0) : x > 0\}$?]

2. Let $\Omega_1 \subset \Omega_2$ be two bounded domains with smooth boundaries and functions $u_k \in C^2(\overline{\Omega}_k)$ and constants [20pt] $\lambda_k, \ k = 1, 2$, are such that

 $u_k > 0$ in Ω_k , $-\Delta u_k = \lambda_k u_k$ in Ω_k , $u_k = 0$ on $\partial \Omega_k$, k = 1, 2.

Prove that

- (a) $\lambda_k > 0, \ k = 1, 2$
- (b) $\lambda_2 \leq \lambda_1$.

[*Hint*. Apply a Gauss-Green formula in an appropriate domain and use that $\partial u_k/\partial \nu$ has a sign on $\partial \Omega_k$. You have to justify the latter fact.]

3. Let u be a C^2 solution of the initial value problem

$$u_{tt} - \Delta u = 0 \quad \text{in } \mathbb{R}^3 \times (0, \infty),$$
$$u = g(x), \quad u_t = h(x) \quad \text{on } \mathbb{R}^3 \times \{0\},$$

where g, h are smooth functions with *compact support*. Prove that

$$E(t) := \int_{\mathbb{R}^3} |u(x,t)|^p dx \to 0 \quad \text{as } t \to \infty$$

for any p > 2.

[*Hint*: Identify the support of $u(\cdot, t)$ as well as prove a pointwise bound $|u(x, t)| \leq C/t$.]

[20pt]

4. Let u be a bounded solution of the initial value problem for the heat equation

$$\begin{aligned} \Delta u - u_t &= 0 \quad \text{in } \mathbb{R}^n \times (0, \infty), \\ u(\cdot, 0) &= g \quad \text{on } \mathbb{R}^n, \end{aligned}$$

with $g \in C_0(\mathbb{R}^n)$ satisfying

$$\int_{\mathbb{R}^n} g(y) dy > 0.$$

Prove that for any R > 0, there exists $T = T_R > 0$ such that

$$u(x,t) > 0$$
 for all $|x| \le R$, $t \ge T$.

[*Hint:* Show that

$$(4\pi t)^{n/2}u(x,t) \to \int_{\mathbb{R}^n} g(y)dy \text{ as } t \to \infty,$$

uniformly for $|x| \leq R$.]

[20pt]

5. Consider the square $\Omega = (-1,1) \times (-1,1) \subset \mathbb{R}^2$ and let $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$ solve

 $\Delta u = -1$ in Ω , u = 0 on $\partial \Omega$.

- (a) Show that u > 0 in Ω
- (b) Show that $u(x_2, x_1) = u(x_1, x_2)$ and $u(\pm x_1, \pm x_2) = u(x_1, x_2)$ for any $x = (x_1, x_2) \in \Omega$.
- (c) Show that

$$u_{x_i} \le 0 \quad \text{in } \Omega \cap \{x_i \ge 0\}, \quad i = 1, 2.$$

In particular,

$$u_{x_1}, u_{x_2} \leq 0 \quad \text{in } \overline{\Omega} \cap \{x_1 \geq 0, x_2 \geq 0\}.$$

[*Hint:* Since u_{x_i} are harmonic, it is enough to show that $u_{x_i} \leq 0$ on $\partial(\Omega \cap \{x_i > 0\})$; use both (a) and (b)] (d) Use (b) and (c) to conclude that

$$u(0,0) = \sup_{\Omega} u.$$

[20pt]