1. If ρ_{0} denotes the maximum density of cars on a highway (i.e., under bumper-to-bumper conditions), then a reasonable model for traffic density ρ is given by

$$
\rho_{t}+(F(\rho))_{x}=0, \quad F(\rho)=c \rho\left(1-\rho / \rho_{0}\right)
$$

where $c>0$ is a constant (free speed of highway).
(a) (Traffic jam.) Suppose the initial density is

$$
\rho(x, 0)= \begin{cases}\frac{1}{2} \rho_{0} & x<0 \\ \rho_{0} & x>0\end{cases}
$$

Find the weak solution and describe the shock wave, if any.
(b) (Long red light turns green.) Find the solution for the initial data

$$
\rho(x, 0)= \begin{cases}\rho_{0}, & x<0 \\ 0, & x>0\end{cases}
$$

In particular, find the density $\rho(0, t)$ for $t>0$.
[Note: The shock-curve solution is non-physical in this case. Find the rarefaction wave solution that is constant on the rays $x / t=v \in(-c, c)$]
2. Let u be a harmonic function in an open set $\Omega \subset \mathbb{R}^{n}$ and $0 \in \Omega$. Then u is real analytic in Ω and we can write it as a uniformly convergent power series near the origin:

$$
u(x)=\sum_{\alpha \in \mathbb{Z}_{+}^{n}} a_{\alpha} x^{\alpha}, \quad|x|<\delta .
$$

For $k \in \mathbb{Z}_{+}$let $p_{k}(x)=\sum_{|\alpha|=k} a_{\alpha} x^{\alpha}$.
(a) Prove that p_{k} is a k-homogeneous harmonic polynomial:

$$
x \nabla p_{k}(x)=k p_{k}(x), \quad \Delta p_{k}(x)=0
$$

(b) Prove that p_{l} and p_{m} are orthogonal on the unit sphere; i.e,

$$
\int_{\partial B_{1}} p_{l}(\theta) p_{m}(\theta) d S_{\theta}=0, \quad l \neq m
$$

[Hint: Use that $\partial_{\nu} p_{k}(\theta)=k p_{k}(\theta)$ for $\theta \in \partial B_{1}$.]
3. Let u be a bounded solution of the heat equation

$$
\Delta u-u_{t}=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty)
$$

with the initial condition $u(x, 0)=g(x)$, where $g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Prove that in $\mathbb{R}^{n} \times(0, \infty)$

$$
\left|D_{x}^{\alpha} D_{t}^{j} u(x, t)\right| \rightarrow 0 \quad \text { as }|x|+t \rightarrow \infty
$$

for any multiindex $\alpha \in \mathbb{Z}_{+}^{n}$ and $j \in \mathbb{Z}_{+}$.
[Hint: Let Φ be the fundamental solution of the heat equation. Start by showing that $\Phi(x, t) \rightarrow 0$ as $|x|+t \rightarrow \infty$. Then consider the cases $\alpha=0, j=0 ; \alpha$ arbitrary, $j=0 ; \alpha, j$ arbitrary.]
4. Let u be a positive harmonic function in the upper half space $H=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}$. Prove that if $e \in H$ and u is bounded on the ray $\{\lambda e: \lambda>0\}$, then u is bounded in every cone $\Gamma_{\alpha}=\left\{x_{n}>(\cos \alpha)|x|\right\}$ for any $0<\alpha<\pi / 2$.
[Hint: Consider the family of rescalings $u_{\lambda}(x)=u(\lambda x), \lambda>0$.]
5. Let $U=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{i}>0, i=1,2,3\right\}$ be the positive octant in \mathbb{R}^{3} and consider the following initial-boundary value problem for the wave equation

$$
\begin{aligned}
u_{t t}-\Delta u=0 & \text { in } U \times(0, \infty) \\
u=0 & \text { on } \partial U \times(0, \infty) \\
u=g, u_{t}=h & \text { on } U \times\{0\} .
\end{aligned}
$$

Suppose g and h are C^{∞} functions supported in the ball $B_{\delta}(1,1,1)$ for small $\delta>0$. Find the smallest time T that will guarantee that

$$
u(1,1,1, t)=0 \quad \text { for } t \geq T
$$

[Hint: You may want to use the reflection principle.]

