MA523 - Qualifying Exam, January 2016

Changyou Wang

Name:

Purdue ID \#:

Instruction: Please provide complete and detailed solutions to each problem that you work. More weight will be given to a complete solution of one problem than solutions of the easy bits from two different problems.

1. (20 points) Find an explicit solution of the Cauchy problem

$$
\left\{\begin{array}{r}
u_{x}+2 x u_{y}=u^{2} \\
u(1, y)=y^{3}
\end{array}\right.
$$

whose domain includes a neighborhood of the line $x=1$.
[blankpage]
2. (20 points) a) For any open ball $B(0, R)=\left\{x \in R^{3}:|x|<R\right\}$, apply the maximum principle of Laplace equation on spherical shell domains to show that there exists at most one solution $u \in C^{2}\left(\mathbb{R}^{3} \backslash B(0, R)\right)$ to

$$
\begin{cases}\Delta u=0, & x \in \mathbb{R}^{3} \backslash \overline{B(0, R)}, \\ u=1, & x \in \partial B(0, R), \\ \lim _{|x| \rightarrow \infty} u(x)=0 . & \end{cases}
$$

b) Find an explicit solution u to the above problem (Hint: a) implies that u must be a radially symmetric function, i.e., $u(x)=u(|x|))$.
[blankpage]
3. (20 points) Suppose that $u \in C^{2}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ solves the heat equation on \mathbb{R}^{n} :

$$
\begin{cases}u_{t}-\Delta u=0, & (x, t) \in \mathbb{R}^{n} \times(0, \infty) \\ u(x, 0)=f(x), & x \in \mathbb{R}^{n}\end{cases}
$$

where $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ has compact support. Use the representation formula of u via the fundamental solution of the heat equation to show the following estimates: it holds
a) for any $k \geq 0,\left|\nabla^{k} u(x, t)\right| \leq \max _{y \in \mathbb{R}^{n}}\left|D^{k} f(y)\right|$, for any $x \in \mathbb{R}^{n}$ and $t>0$.
b) $|\nabla u(x, t)| \leq C t^{-\frac{n+2}{2}} \int_{\mathbb{R}^{n}}|f(y)| d y$, for any $x \in \mathbb{R}^{n}$ and $t>0$.
c) $|\nabla u(x, t)| \leq C t^{-\frac{1}{2}} \max _{y \in \mathbb{R}^{n}}|f(y)|$, for any $x \in \mathbb{R}^{n}$ and $t>0$.

Here $C>0$ depends only on n.
[blankpage]
4. (20 points) For a bounded, smooth domain $\Omega \subset \mathbb{R}^{n}$, a nonzero function $g \in C_{0}^{\infty}(\Omega)$, and $0<T \leq \infty$, assume that $u \in C^{2}(\bar{\Omega} \times[0, T))$ solves

$$
\begin{cases}u_{t}-\Delta u=\lambda(t) u, & \text { in } \Omega \times(0, T), \\ \frac{\partial u}{\partial \nu}=0, & \text { on } \partial \Omega \times[0, T), \\ u=g, & \text { on } \Omega \times\{t=0\},\end{cases}
$$

for some $\lambda \in C([0, T))$, where ν is the outward unit normal of $\partial \Omega$. Show that

$$
\int_{\Omega} u^{2}(x, t) d x=\int_{\Omega} g^{2}(x) d x, \text { for all } 0 \leq t<T
$$

if and only if

$$
\lambda(t)=\frac{\int_{\Omega}|\nabla u|^{2}(x, t) d x}{\int_{\Omega} g^{2}(x) d x}, \text { for all } 0 \leq t<T .
$$

[blankpage]
5. (20 points) For any given odd function $\phi \in C^{\infty}(\mathbb{R})$, assume that $u \in C^{2}\left(\mathbb{R}^{3} \times[0, \infty)\right)$ solves the Cauchy problem of the wave equation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=0,(x, t) \in \mathbb{R}^{3} \times(0, \infty) \\
u(x, 0)=\frac{\phi(|x|)}{|x|}, \quad 0 \neq x \in \mathbb{R}^{3} ; u(0,0)=\phi^{\prime}(0) \\
u_{t}(x, 0)=0, x \in \mathbb{R}^{3}
\end{array}\right.
$$

Show that

$$
u(x, t)=\frac{\phi(|x|+t)+\phi(|x|-t)}{2|x|},(x, t) \in \mathbb{R}^{3} \times[0, \infty)
$$

(Hint: First, by the uniqueness, $u(x, t)$ is spherically symmetric in x. Set $v(r, t)=r u$, where $r=|x|$. Then v solves the wave equation in $\mathbb{R}_{+} \times(0, \infty)$.)
[blankpage]

