1. Show that there are no solutions of the linear equation $u_{x}+u_{y}=u$ which pass through the straight line $x=t, y=t, u=1$.
2. Solve the initial boundary value problem $u_{t}=k u_{x x}, u(0, t)=0, u(\pi, t)=0, u(x, 0)=$ $\sin x$ when $0 \leq x \leq \pi, t>0$, and k is a constant.
3. Show that the problem $y_{t t}=a^{2} y_{x x}+\phi(x, t), 0<x<c, t>0$, with boundary conditions $y(0, t)=p(t), y(c, t)=q(t), t \geq 0$ and initial conditions $y(x, 0)=f(x)$, $y_{t}(x, 0)=g(x)$ has at most one solution $y(x, t)$ which is twice continuously differentiable.
4. Show that $\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$ is harmonic, except at the origin.
5. For a function $h(x, y)$ which is harmonic in the domain $|x|<1,|y|<1$, one on the side $x=-1$ and zero on the remainder of the boundary, what is the value of h at the origin? Assume that $h(x, y)$ is continuous on the closed square, $|x| \leq 1,|y| \leq 1$.
