MA 523, Qualifying Exam August 2016 **Professor Donnelly**

1. Show that there are no solutions of the linear equation $u_x + u_y = u$ which pass through the straight line x = t, y = t, u = 1.

2. Solve the initial boundary value problem $u_t = ku_{xx}$, u(0,t) = 0, $u(\pi,t) = 0$, $u(x,0) = \sin x$ when $0 \le x \le \pi$, t > 0, and k is a constant.

3. Show that the problem $y_{tt} = a^2 y_{xx} + \phi(x,t)$, 0 < x < c, t > 0, with boundary conditions y(0,t) = p(t), y(c,t) = q(t), $t \ge 0$ and initial conditions y(x,0) = f(x), $y_t(x,0) = g(x)$ has at most one solution y(x,t) which is twice continuously differentiable.

4. Show that $\frac{x^2 - y^2}{(x^2 + y^2)^2}$ is harmonic, except at the origin.

5. For a function h(x, y) which is harmonic in the domain |x| < 1, |y| < 1, one on the side x = -1 and zero on the remainder of the boundary, what is the value of h at the origin? Assume that h(x, y) is continuous on the closed square, $|x| \le 1$, $|y| \le 1$.