MA 523: Partial Differential Equations January 2015, Qualifying Examination (Yip)

Your PUID:

This examination contains five questions, totaling 100 points. In order to get full credits, you need to give **correct** and **simplified** answers and explain in a **comprehensible way** how you arrive at them.

1. Let Ω be a smooth bounded domain in \mathbb{R}^2 . Let also V(x, y) = (A(x, y), B(x, y)) be a smooth vector field defined on Ω such that $V \cdot \hat{n} > 0$ on $\partial \Omega$ (where \hat{n} is the outward normal to $\partial \Omega$).

Suppose u is a smooth solution of the following equation on the whole Ω :

$$A(x,y)u_x + B(x,y)u_y = -u.$$

Show that u vanishes identically.

(Hint: investigate the behavior of u at its interior and boundary maxima and minima.)

2. Solve the following PDE:

$$u_{yy} = u_{xx} + u,$$

 $u(x,0) = e^x, \qquad u_y(x,0) = 0.$

(Hint: use power series expansion in the y-variable with x-dependent coefficients or use separation of variables.)

3. Solve the following wave equation on the whole real line:

$$u_{tt} - u_{xx} = x^2$$
, for $0 < t$, $-\infty < x < \infty$,
 $u = x$, $u_t = 0$, for $t = 0$

It is not sufficient to just write down a general formula. Compute all the necessary integrals if there are any.

(Hint: it might be easier to first find a *special time independent* solution.)

4. Consider the following heat equation on the whole real line:

$$\begin{array}{rcl} u_t &=& u_{xx}, & -\infty < x < \infty, \ t > 0, \\ u(x,0) &=& f(x) \end{array}$$

Prove the following estimates:

(a)
$$\|u\|_{L^{\infty}} \leq C \|f\|_{L^{\infty}},$$

(b) $\|u\|_{L^{\infty}} \leq C \frac{\|f\|_{L^{1}}}{\sqrt{t}},$
(c) $\|u_{x}\|_{L^{\infty}} \leq C \frac{\|f\|_{L^{\infty}}}{\sqrt{t}},$
(d) $\|u_{x}\|_{L^{\infty}} \leq C \frac{\|f\|_{L^{1}}}{t},$
(e) $\|u_{x}\|_{L^{\infty}} \leq C \|f_{x}\|_{L^{\infty}},$
(f) $\|u_{x}\|_{L^{\infty}} \leq C \frac{\|f_{x}\|_{L^{1}}}{\sqrt{t}}.$

In the above, C is some constant and the spaces L^{∞} , L^{1} are defined with respect to the spatial variable x. You can assume all the functions are nice and smooth and can arbitrarily interchange integration and differentiation.

5. Let u(x,t) be a positive solution of the following equation:

$$u_t = \mu u_{xx}, \quad \text{for } t > 0$$

where μ is some positive constant. You are given the fact that the function $v(x,t) = -2\mu \frac{u_x}{u}$ solves the following "viscous" Burgers' equation:

$$v_t + vv_x = \mu v_{xx}$$
 for $t > 0$.

Let the initial data for v be given by $v(x, 0) = \phi(x) \in C_0(\mathbf{R})$ (i.e. ϕ has compact support).

- (a) Show that shocks for v will not form. (This is in contrast with the inviscous Burgers' equation $(\mu = 0), v_t + vv_x = 0.$)
- (b) Show that for some constant C,

$$\|v(\cdot,t)\|_{L^{\infty}} \leq \frac{C}{\sqrt{t}}$$
 (and hence $\lim_{t \to \infty} v(x,t) = 0$ uniformly in x).

(Hint: first relate the initial data of u to ϕ and then use Green's function representation for u(x,t).)