MA 523: Partial Differential Equations
 January 2015, Qualifying Examination (Yip)

Your PUID:

This examination contains five questions, totaling 100 points. In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.

1. Let Ω be a smooth bounded domain in \mathbf{R}^{2}. Let also $V(x, y)=(A(x, y), B(x, y))$ be a smooth vector field defined on Ω such that $V \cdot \hat{n}>0$ on $\partial \Omega$ (where \hat{n} is the outward normal to $\partial \Omega$).
Suppose u is a smooth solution of the following equation on the whole Ω :

$$
A(x, y) u_{x}+B(x, y) u_{y}=-u .
$$

Show that u vanishes identically.
(Hint: investigate the behavior of u at its interior and boundary maxima and minima.)

This is a blank page.
2. Solve the following PDE:

$$
\begin{aligned}
u_{y y}= & u_{x x}+u, \\
u(x, 0)=e^{x}, & u_{y}(x, 0)=0 .
\end{aligned}
$$

(Hint: use power series expansion in the y-variable with x-dependent coefficients or use separation of variables.)

This is a blank page.
3. Solve the following wave equation on the whole real line:

$$
\begin{aligned}
u_{t t}-u_{x x} & =x^{2}, \quad \text { for } 0<t,-\infty<x<\infty, \\
u=x, & u_{t}=0, \quad \text { for } t=0
\end{aligned}
$$

It is not sufficient to just write down a general formula. Compute all the necessary integrals if there are any.
(Hint: it might be easier to first find a special time independent solution.)

This is a blank page.
4. Consider the following heat equation on the whole real line:

$$
\begin{aligned}
u_{t} & =u_{x x}, \quad-\infty<x<\infty, t>0, \\
u(x, 0) & =f(x)
\end{aligned}
$$

Prove the following estimates:
(a) $\|u\|_{L^{\infty}} \leq C\|f\|_{L^{\infty}}$,
(b) $\|u\|_{L^{\infty}} \leq C \frac{\|f\|_{L^{1}}}{\sqrt{t}}$,
(c) $\left\|u_{x}\right\|_{L^{\infty}} \leq C \frac{\|f\|_{L^{\infty}}}{\sqrt{t}}$,
(d) $\left\|u_{x}\right\|_{L^{\infty}} \leq C \frac{\|f\|_{L^{1}}}{t}$,
(e) $\left\|u_{x}\right\|_{L^{\infty}} \leq C\left\|f_{x}\right\|_{L^{\infty}}$,
(f) $\left\|u_{x}\right\|_{L^{\infty}} \leq C \frac{\left\|f_{x}\right\|_{L^{1}}}{\sqrt{t}}$.

In the above, C is some constant and the spaces L^{∞}, L^{1} are defined with respect to the spatial variable x. You can assume all the functions are nice and smooth and can arbitrarily interchange integration and differentiation.

This is a blank page.

This is a blank page.
5. Let $u(x, t)$ be a positive solution of the following equation:

$$
u_{t}=\mu u_{x x}, \quad \text { for } t>0
$$

where μ is some positive constant. You are given the fact that the function $v(x, t)=-2 \mu \frac{u_{x}}{u}$ solves the following "viscous" Burgers' equation:

$$
v_{t}+v v_{x}=\mu v_{x x} \quad \text { for } t>0
$$

Let the initial data for v be given by $v(x, 0)=\phi(x) \in C_{0}(\mathbf{R})$ (i.e. ϕ has compact support).
(a) Show that shocks for v will not form. (This is in contrast with the inviscous Burgers' equation $(\mu=0), v_{t}+v v_{x}=0$.)
(b) Show that for some constant C,

$$
\|v(\cdot, t)\|_{L^{\infty}} \leq \frac{C}{\sqrt{t}} \quad\left(\text { and hence } \lim _{t \rightarrow \infty} v(x, t)=0 \text { uniformly in } x\right) .
$$

(Hint: first relate the initial data of u to ϕ and then use Green's function representation for $u(x, t)$.

This is a blank page.

This is a blank page.

