MA52300 Qualifying Examination

January 2014 - Prof. Petrosyan

1. Consider the first order equation in \mathbb{R}^{2}

$$
x_{2} u_{x_{1}}+x_{1} u_{x_{2}}=0 .
$$

(a) Find the characteristic curves of the equation.
(b) Consider the Cauchy problem for this equation prescribed on the line $x_{1}=1$:

$$
u\left(1, x_{2}\right)=f\left(x_{2}\right) .
$$

Find a necessary condition on f so that the problem is solvable in a neighborhood of the point (1,0).
2. Let u be a continuous bounded solution of the initial value problem for the Laplace equation

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{R}_{+}^{n}=\left\{\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\} \\ u\left(x^{\prime}, 0\right)=g\left(x^{\prime}\right) & \text { for } x^{\prime} \in \mathbb{R}^{n-1},\end{cases}
$$

where g is a continuous function with compact support in \mathbb{R}^{n-1}. Here $n \geq 2$. Prove that

$$
u(x) \rightarrow 0 \quad \text { as }|x| \rightarrow \infty
$$

for $x \in \mathbb{R}_{+}^{n}$.
3. Let u be a bounded solution of the heat equation

$$
\Delta u-u_{t}=0 \quad \text { in } \mathbb{R} \times(0, \infty)
$$

with the initial conditions $u(x, 0)=g(x)$, where g is a bounded continuous function on \mathbb{R} satisfying the Hölder condition

$$
|g(x)-g(y)| \leq M|x-y|^{\alpha}, \quad x, y \in \mathbb{R}
$$

with a constant $\alpha \in(0,1]$. Show that

$$
\begin{aligned}
& |u(x, t)-u(y, t)| \leq M|x-y|^{\alpha}, \quad x, y \in \mathbb{R}, t>0, \quad \text { and } \\
& |u(x, t)-u(x, s)| \leq C_{\alpha} M|t-s|^{\alpha / 2}, \quad x \in \mathbb{R}, t, s>0 .
\end{aligned}
$$

[Hint: For the last inequality, in the representation formula of $u(x, t)$ as a convolution with the heat kernel $\Phi(y, t)$, make a change of variables $z=y / \sqrt{t}$ and use that $|\sqrt{t}-\sqrt{s}| \leq \sqrt{|t-s|}$.]
4. Let u be a positive harmonic function in the unit ball B_{1} in \mathbb{R}^{n}. Show that

$$
|D(\ln u)| \leq M \quad \text { in } B_{1 / 2}
$$

for a constant M depending only on the dimension n.
[Hint: Use the interior derivative estimate $|D u(x)| \leq \frac{C_{n}}{r} \sup _{B_{r}(x)}|u|$ for $B_{r}(x) \subset B_{1}$ as well as the Harnack inequality for harmonic functions].
5. Let u be a C^{2} solution of the initial value problem

$$
\begin{array}{ll}
u_{t t}-\Delta u=|x|^{k} & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u=0, \quad u_{t}=0 & \text { on } \mathbb{R}^{n} \times\{0\}
\end{array}
$$

for some $k \geq 0$. Prove that there exists a function $\phi(r)$ such that

$$
u(x, t)=t^{k+2} \phi(|x| / t) .
$$

[Hint: As one of the steps show that u is $(k+2)$-homogeneous in (x, t) variables, i.e. $u(\lambda x, \lambda t)=$ $\lambda^{k+2} u(x, t)$ for any $\lambda>0$.]

