MA52300 Qualifying Examination

August 2014 - Professors P. Bauman, A. Petrosyan, D. Phillips

1. Consider the Cauchy problem:

$$
\begin{aligned}
x u_{x}+y u_{y} & =2 u, \\
u(x, 1) & =x^{3} .
\end{aligned}
$$

(a) Use the method of characteristics to find a formula for a C^{1} solution $u=u(x, y)$ defined in some neighborhood of the line $y=1$ in \mathbb{R}^{2}.
(b) Is the solution you found in part (a) unique among all C^{1} solutions in some (possibly smaller) neighborhood of the line $y=1$? Explain your reasoning.
2. Reduce the second order equation to a canonical form and solve the Cauchy problem:

$$
\begin{gathered}
4 y^{2} u_{x x}+2\left(1-y^{2}\right) u_{x y}-u_{y y}-\frac{2 y}{1+y^{2}}\left(2 u_{x}-u_{y}\right)=0 \\
\left.u(x, y)\right|_{y=0}=\phi(x),\left.\quad u_{y}(x, y)\right|_{y=0}=\psi(x)
\end{gathered}
$$

3. Let $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be harmonic in \mathbb{R}^{n}. Prove that u is constant in each of the following cases.
(a) There exists a constant C such that

$$
\int_{B(x, 1)}|u(y)| d y \leq C \quad \text { for any } x \in \mathbb{R}^{n}
$$

[Hint: First show that u is bounded in \mathbb{R}^{n}.]
(b) u is radial, i.e., $u(x)=\phi(|x|)$ for some function ϕ.
4. Let Ω be a bounded domain in \mathbb{R}^{n} with a smooth boundary and $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ a solution of the following problem

$$
\begin{aligned}
& u_{t}-\Delta u=0 \\
& \text { in } \Omega \times(0, \infty) \\
& u=0 \\
& \text { on } \partial \Omega \times(0, \infty) \\
& u=g \geq 0 \\
& \text { on } \Omega \times\{0\} .
\end{aligned}
$$

(a) Show that $u(x, t) \geq 0$ in $\Omega \times(0, \infty)$ and $\partial u / \partial \nu \leq 0$ on $\partial \Omega \times(0, \infty)$, where ν is the outer normal on $\partial \Omega$.
(b) Let $E(t):=\int_{\Omega} u^{2}(x, t) d x$. Show that $E(t)$ is a nonincreasing function of t.
5. Let $u(x, t)$ solve

$$
\begin{aligned}
& u_{t t}-\Delta u=0 \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \\
& u(x, 0)= \begin{cases}1 & \text { if }|x| \leq 1, \\
0 & \text { if }|x|>1 .\end{cases} \\
& u_{t}(x, 0)= \begin{cases}2 & \text { if }|x| \leq 1, \\
0 & \text { if }|x|>1 .\end{cases}
\end{aligned}
$$

(a) Give representations for u for the cases $n=2$ and $n=3$. Work out explicit formulas for $u(0, t)$ for $t \geq 0$ in each case.
(b) State Huygen's principle and explain the connection between the principle and the two examples.

