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Problem 1. Prove that the solution to the Cauchy problem{
∆u− utt = 0, in R3 × (0,∞),

|x|u(x, 0) = sin |x|, ut(x, 0) = 0, x ∈ R3,

is

u(x, t) =
sin(|x|+ t) + sin(|x| − t)

2|x|
.

Hint: Notice that, by uniqueness, u must be spherically symmetric in x ∈ R3. Consider the
function v = ru, where r = |x|, and solve the Cauchy problem in the two variables r and t
satisfied by v.
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Problem 2. Let A ⊂ Rn, n ≥ 3, be a C2, connected, bounded open set, and let Ω = Rn \A.
(i) Prove that if the problem 

∆u = 0 in Ω ,

u = 1 on ∂Ω ,

lim|x|→∞ u(x) = 0

has a solution u ∈ C2(Ω) ∩ C(Ω), it must be unique.
(ii) Show that if A = B(0, R) = {x ∈ Rn | |x| < R}, then u must be spherically symmetric and
find an explicit formula for the solution u.
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Problem 3. Let φ ∈ C∞0 (Rn), and let ω ∈ Rn be given. Using Fourier transform find the
solution of the Cauchy problem{

∆f+ < ω,∇f > −∂f
∂t = 0, in Rn × (0,∞),

f(x, 0) = φ(x), x ∈ Rn.
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Problem 4. Let

G(x− y; t− s) =

{
(4π(t− s))−

n
2 exp

(
− |x−y|

2

4(t−s)

)
, t > s ,

0, t ≤ s,

be the fundamental solution of the heat equation Hu = ∆u− ut = 0 in Rn+1, with singularity
at (y, s). Let u ∈ C2,1(Rn× [0, T ]) be a function satisfying, together with its derivatives of order
up to two, the inequality

(1) |u(x, t)| ≤ Aea|x|2 , x ∈ Rn, t ≥ 0,

for some A, a > 0. Consider the function

φ(R)
def
=

∫
Rn

u2(y,R2)G(x− y;T −R2)dy, 0 ≤ R <
√
T ,

where x ∈ Rn is fixed and the number T > 0 is arbitrarily chosen.
(i) Prove that

φ′(R) = −4R

∫
Rn

u(y,R2)Hu(y,R2)G(x− y;T −R2)dy

− 4R

∫
Rn

|∇u(y,R2)|2G(x− y;T −R2)dy.

(Note: You can take for granted that, thanks to (1), all differentiations under the integral sign
are legitimate, and the relative integrals convergent. So, do not worry about this).

(ii) By letting R →
√
T , and using the property lim

t→0+

∫
Rn G(x− y, t)ϕ(y)dy = ϕ(x), infer from

(i) that if u satisfies the differential inequality

u(x, t)Hu(x, t) ≥ 0 (x, t) ∈ Rn × (0,∞),

and u(x, 0) = 0 for x ∈ Rn, then it must be u ≡ 0 in Rn × (0,∞).
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Problem 5. Let B = B(0, R) = {x ∈ R3 | |x| < R}.
(i) Prove that the problem {

∆u = −λu in B, λ > 0,

u = 0, on ∂B,

has infinitely many solutions couples {(λk, uk)}k∈N, with λk ↗∞ and uk ∈ C∞(B).

(ii) Find an explicit formula for λk and uk.


