Math 523 Qualifying Examination January, 2012 Prof. N. Garofalo

Name.....

I. D. no.

Problem	Score	Max. pts.
1		20
2		30
3		20
4		30
5		20
Total		120

Problem 1. Let ϕ be a continuous function on \mathbb{R}^n with compact support, $F \in C(\mathbb{R}^n \times (0, \infty))$ with compact support, $a \in \mathbb{R}^n \setminus \{0\}$. Write an explicit formula for the solution of the non-homogeneous Cauchy problem

$$\begin{cases} < a, \nabla u > +u_t = F, & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(x, 0) = \phi(x), & x \in \mathbb{R}^n. \end{cases}$$

Problem 2. Consider the matrix $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- a) The Fourier transform of the function $f(x) = e^{-\langle Ax, x \rangle}$, is A. $\hat{f}(\xi, \eta, \zeta) = \frac{2\pi^{\frac{3}{2}}}{\sqrt{6}}e^{-\pi^{2}(2\xi^{2}+3\eta^{2}+\zeta^{2})}$ B. $\hat{f}(\xi, \eta, \zeta) = \frac{\pi^{\frac{5}{2}}}{\sqrt{6}}e^{-\frac{\pi^{2}}{\sqrt{6}}(\xi^{2}+3\eta^{2}+2\zeta^{2})}$ C. $\hat{f}(\xi, \eta, \zeta) = \frac{\pi^{\frac{3}{2}}}{6}e^{-\pi^{2}(2\xi^{2}+3\eta^{2}+\zeta^{2})}$ D. $\hat{f}(\xi, \eta, \zeta) = \frac{\pi^{\frac{3}{2}}}{\sqrt{6}}e^{-\pi^{2}(\frac{\xi^{2}}{2}+\frac{\eta^{2}}{3}+\zeta^{2})}$ E. $\hat{f}(\xi, \eta, \zeta) = \frac{\pi^{\frac{3}{2}}}{6}e^{-\pi^{2}(\frac{\xi^{2}}{2}+\frac{\eta^{2}}{3}+\zeta^{2})}$
- b) Using part a) solve the Cauchy problem

$$\begin{cases} \operatorname{div}(A\nabla u) - u_t = 0 & \text{in } \mathbb{R}^3 \times (0, \infty), \\ u(x, 0) = \phi(x), & x \in \mathbb{R}^3, \end{cases}$$

where ϕ is a continuous function on \mathbb{R}^3 with compact support.

$$\Omega = \left((-4,4) \times (-4,4) \right) \setminus \left([-1,1] \times [-1,1] \right).$$

Suppose that $u \in C^{2,1}(\Omega)$, $u \leq 0$, be such that

$$u_{xx} - u_t \ge 0, \quad \text{ in } \Omega.$$

If u(2,0) = 0, determine the subset of Ω (possibly constituted only of the point (2,0)) in which the function u vanishes. Answers in the form a (correct) picture will be accepted.

Problem 4. Let $n \ge 2$, and consider the inversion $\Phi : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$ given by $\Phi(x) = \frac{x}{|x|^2}$.

- a) Prove that, given a > 0, Φ maps the half-space $H_a^+ = \{x = (x', x_n) \in \mathbb{R}^n \mid x_n > a\}$ onto the ball $B((0, \frac{1}{2a}), \frac{1}{2a}) \subset \mathbb{R}^n$ centered at the point $(0, \frac{1}{2a})$ (here $0 \in \mathbb{R}^{n-1}$), and with radius $\frac{1}{2a}$.
- b) Let $\tilde{f}(x) = |x|^{2-n} f(\frac{x}{|x|^2})$ be the so-called *Kelvin transform* of a function f. Compute the Kelvin transform of the function $f(x) = x_n a$ on H_a^+ .

Problem 5.

a) Prove that for every $\alpha > 0$ the function

$$f(x) = \int_{\mathbb{S}^{n-1}} e^{-i\alpha \langle x, \omega \rangle} d\sigma(\omega),$$

solves the equation $\Delta f + \alpha^2 f = 0$ in \mathbb{R}^n . b) Use part a) and separation of variables, to find an explicit (formal) solution to the Cauchy problem 1

$$\begin{cases} \Delta u - u_{tt} = 0 & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(x, 0) = f(x), & u_t(x, 0) = 0 & x \in \mathbb{R}^n. \end{cases}$$