Math 523
Qualifying Examination
January, 2012
Prof. N. Garofalo

Name..
I. D. no.

Problem	Score	Max. pts.
$\mathbf{1}$		20
$\mathbf{2}$		30
$\mathbf{3}$		20
$\mathbf{4}$		30
$\mathbf{5}$		20
Total		120

Problem 1. Let ϕ be a continuous function on \mathbb{R}^{n} with compact support, $F \in C\left(\mathbb{R}^{n} \times(0, \infty)\right)$ with compact support, $a \in \mathbb{R}^{n} \backslash\{0\}$. Write an explicit formula for the solution of the nonhomogeneous Cauchy problem

$$
\left\{\begin{array}{l}
<a, \nabla u>+u_{t}=F, \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u(x, 0)=\phi(x), \quad x \in \mathbb{R}^{n} .
\end{array}\right.
$$

Problem 2. Consider the matrix $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right)$.
a) The Fourier transform of the function $f(x)=e^{-\langle A x, x\rangle}$, is
A. $\hat{f}(\xi, \eta, \zeta)=\frac{2 \pi^{\frac{3}{2}}}{\sqrt{6}} e^{-\pi^{2}\left(2 \xi^{2}+3 \eta^{2}+\zeta^{2}\right)}$
B. $\hat{f}(\xi, \eta, \zeta)=\frac{\pi^{\frac{5}{2}}}{\sqrt{6}} e^{-\frac{\pi^{2}}{\sqrt{6}}\left(\xi^{2}+3 \eta^{2}+2 \zeta^{2}\right)}$
C. $\hat{f}(\xi, \eta, \zeta)=\frac{\pi^{\frac{3}{2}}}{6} e^{-\pi^{2}\left(2 \xi^{2}+3 \eta^{2}+\zeta^{2}\right)}$
D. $\hat{f}(\xi, \eta, \zeta)=\frac{\pi^{\frac{3}{2}}}{\sqrt{6}} e^{-\pi^{2}\left(\frac{\xi^{2}}{2}+\frac{\eta^{2}}{3}+\zeta^{2}\right)}$
E. $\hat{f}(\xi, \eta, \zeta)=\frac{\pi^{\frac{3}{2}}}{6} e^{-\pi^{2}\left(\frac{\xi^{2}}{2}+\frac{\eta^{2}}{3}+\zeta^{2}\right)}$
b) Using part a) solve the Cauchy problem

$$
\left\{\begin{array}{l}
\operatorname{div}(A \nabla u)-u_{t}=0 \quad \text { in } \mathbb{R}^{3} \times(0, \infty), \\
u(x, 0)=\phi(x), \quad x \in \mathbb{R}^{3},
\end{array}\right.
$$

where ϕ is a continuous function on \mathbb{R}^{3} with compact support.

Problem 3. Let $\Omega \subset \mathbb{R}^{2}$ be the open set defined by

$$
\Omega=((-4,4) \times(-4,4)) \backslash([-1,1] \times[-1,1])
$$

Suppose that $u \in C^{2,1}(\Omega), u \leq 0$, be such that

$$
u_{x x}-u_{t} \geq 0, \quad \text { in } \Omega .
$$

If $u(2,0)=0$, determine the subset of Ω (possibly constituted only of the point $(2,0)$) in which the function u vanishes. Answers in the form a (correct) picture will be accepted.

Problem 4. Let $n \geq 2$, and consider the inversion $\Phi: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ given by $\Phi(x)=\frac{x}{|x|^{2}}$.
a) Prove that, given $a>0, \Phi$ maps the half-space $H_{a}^{+}=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n} \mid x_{n}>a\right\}$ onto the ball $B\left(\left(0, \frac{1}{2 a}\right), \frac{1}{2 a}\right) \subset \mathbb{R}^{n}$ centered at the point $\left(0, \frac{1}{2 a}\right)$ (here $0 \in \mathbb{R}^{n-1}$), and with radius $\frac{1}{2 a}$.
b) Let $\tilde{f}(x)=|x|^{2-n} f\left(\frac{x}{|x|^{2}}\right)$ be the so-called Kelvin transform of a function f. Compute the Kelvin transform of the function $f(x)=x_{n}-a$ on H_{a}^{+}.

Problem 5.

a) Prove that for every $\alpha>0$ the function

$$
f(x)=\int_{\mathbb{S}^{n-1}} e^{-i \alpha<x, \omega>} d \sigma(\omega),
$$

solves the equation $\Delta f+\alpha^{2} f=0$ in \mathbb{R}^{n}.
b) Use part a) and separation of variables, to find an explicit (formal) solution to the Cauchy problem

$$
\left\{\begin{array}{l}
\Delta u-u_{t t}=0 \quad \text { in } \quad \mathbb{R}^{n} \times(0, \infty), \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=0 \quad x \in \mathbb{R}^{n} .
\end{array}\right.
$$

