Math 523 Qualifying Examination August 7, 2012 Prof. N. Garofalo

Name.....

I. D. no.

Problem	Score	Max. pts.
1		20
2		30
3		20
4		30
5		20
Total		120

Problem 1. Let ϕ be a continuous function on \mathbb{R}^n with compact support, $F \in C(\mathbb{R}^n \times (0, \infty))$ with compact support. Write an explicit formula for the solution of the non-homogeneous Cauchy problem

$$\begin{cases} u_{x_1} - 3u_{x_n} + u_t = F, & \text{in } \mathbb{R}^n \times (0, \infty), \\ u(x, 0) = \phi(x), & x \in \mathbb{R}^n. \end{cases}$$

Here, for i = 1, ..., n, we have set $u_{x_i} = \frac{\partial u}{\partial x_i}$.

Problem 2. Consider the matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

- a) The Fourier transform of the function $f(x) = e^{-\langle Ax, x \rangle}$, is A. $\hat{f}(\xi, \eta, \zeta) = \frac{2\pi^{\frac{3}{2}}}{\sqrt{6}}e^{-\pi^{2}(\xi^{2}+2\eta^{2}+3\zeta^{2})}$ B. $\hat{f}(\xi, \eta, \zeta) = \frac{\pi^{\frac{3}{2}}}{\sqrt{6}}e^{-\frac{\pi^{2}}{\sqrt{6}}(\xi^{2}+2\eta^{2}+3\zeta^{2})}$ C. $\hat{f}(\xi, \eta, \zeta) = \frac{\pi^{\frac{3}{2}}}{6}e^{-\pi^{2}(\xi^{2}+2\eta^{2}+3\zeta^{2})}$ D. $\hat{f}(\xi, \eta, \zeta) = \frac{\pi^{\frac{3}{2}}}{\sqrt{6}}e^{-\pi^{2}(\xi^{2}+\frac{\eta^{2}}{2}+\frac{\zeta^{2}}{3})}$ E. $\hat{f}(\xi, \eta, \zeta) = \frac{\pi^{\frac{3}{2}}}{6}e^{-\pi^{2}(\xi^{2}+\frac{\eta^{2}}{2}+\frac{\zeta^{2}}{3})}$
- b) Using part a) solve the Cauchy problem

$$\begin{cases} \operatorname{div}(A\nabla u) - u_t = 0 & \text{in } \mathbb{R}^3 \times (0, \infty), \\ u(x, 0) = \phi(x), & x \in \mathbb{R}^3, \end{cases}$$

where ϕ is a continuous function on \mathbb{R}^3 with compact support.

Problem 3. Let $f \in C^2(\mathbb{R}^n)$ be a solution of $\Delta f = |x|^{\alpha}$, for some given $\alpha > 0$. Let $M_f(r) = \frac{1}{\sigma_{n-1}r^{n-1}} \int_{S(r)} f(x) d\sigma(x)$, be the spherical mean of f over the sphere $S(r) = \{x \in \mathbb{R}^n \mid |x| = r\}$. 1) Prove that

$$M_f(r) = f(0) + \frac{r^{\alpha+2}}{(\alpha+2)(\alpha+n)}, \quad r > 0.$$

2) Prove that there cannot exist $C \ge 0$ and $0 < \varepsilon < \alpha + 2$ such that

$$|f(x)| \le C(1+|x|)^{\varepsilon}, \quad \forall x \in \mathbb{R}^n$$

Problem 4. Let $B_R = \{x \in \mathbb{R}^n \mid |x| < R\}.$

- a) Prove that if f ∈ C²(B_R) is harmonic in B_R and spherically symmetric (i.e., f(Tx) = f(x) for every T ∈ O(n) and for every x ∈ B_R), then f must be constant.
 b) Is the same conclusion necessarily true if f ∈ C²(B_R \ {0}) is harmonic in B_R \ {0} and
- spherically symmetric there?

Problem 5.

1) Let $\mathbb{S}^{n-1} = \{\omega \in \mathbb{R}^n \mid |\omega| = 1\}$ be the unit sphere centered at the origin. Prove that the function $u(x,t) = e^{i\sqrt{\lambda}t}\phi(x)$, where $\phi \in C^{\infty}(\mathbb{R}^n)$ is defined by

$$\phi(x) = \int_{\mathbb{S}^{n-1}} e^{i\sqrt{\lambda} \langle x, \omega \rangle} \, d\sigma(\omega) \,, \qquad \lambda > 0 \,, \quad x \in \mathbb{R}^n \,,$$

solves the wave equation $\Box u = \Delta u - u_{tt} = 0$ in \mathbb{R}^{n+1} . Here, $d\sigma$ denotes the (n-1)-dimensional surface measure on \mathbb{S}^{n-1} , and $i^2 = -1$.

2) Find an explicit formula for u(x,t) when n = 3.