MA 523 Qualifying Exam, Spring 2011. Name:
There are five questions, each worth 20 points.

1. Let $I(x)$ be the indicator function for $B_{1}(0)=\left\{x \in \mathbb{R}^{3}:|x|<1\right\}$. Let u be such that

$$
\begin{array}{rll}
-\Delta u=I(x) & \text { for } x \in \mathbb{R}^{3}, \\
u(x) \rightarrow 0 & \text { as } & |x| \rightarrow \infty
\end{array}
$$

a) Represent u using the fundamental solution of Laplace's equation.
b) Prove that there are constants $0<A_{1}<A_{2}<\infty$ so that

$$
\frac{A_{1}}{|x|} \leq u(x) \leq \frac{A_{2}}{|x|}
$$

for all $|x| \geq 2$.
2. Let $u(x, t)$ solve

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=f(x) \quad \text { for } x \in \mathbb{R}, t>0 \\
u(x, 0)=0 \\
u_{t}(x, 0)=0
\end{array}\right.
$$

where f is C^{1},

$$
\begin{cases}0<f(x) \leq 1 & \text { if }|x|<1 \\ f=0 & \text { if }|x| \geq 1\end{cases}
$$

a) Give a formula for u and verify that it is a solution to the problem.
b) Describe the region in $\mathbb{R} \times[0, \infty)$ where $u(x, t)$ vanishes. Justify your answer.
3. Let $u(x, t)$ solve

$$
\begin{cases}u_{t}-\Delta u=0 & \text { for } x \in \mathbb{R}^{2}, t>0 \\ u(x, 0)=I(x) & \text { for } x \in \mathbb{R}^{2}\end{cases}
$$

where $I(x)$ is the indicator function for $B_{1}(0)=\left\{x \in \mathbb{R}^{2}:|x|<1\right\}$
a) Represent u using the fundamental solution to the heat equation.
b) Evaluate $u(0, t)$ for $t>0$. Find the limits $\lim _{t \rightarrow \infty} t^{2} u_{t}(0, t)$ and $\lim _{t \downarrow 0} t^{-1} u_{t}(0, t)$.
4. Let Ω be a bounded domain in \mathbb{R}^{2} with a smooth boundary. Let $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ satisfy

$$
\begin{cases}u_{t}-\Delta u=0 & \text { for } x \in \Omega, t>0 \\ \nu \cdot \nabla u=u_{\nu}(x, t)=0 & \text { for } x \in \partial \Omega, t>0\end{cases}
$$

where $\nu(x)$ is the exterior normal to $\partial \Omega$ at x. Prove that $E_{1}(t)=\int_{\Omega} u^{2} d x$ and

$$
E_{2}(t)=\int_{\Omega}|\nabla u|^{2} d x
$$

are such that $\frac{d E_{1}}{d t}(t) \leq 0$ and $\frac{d E_{2}}{d t}(t) \leq 0$.
5. Consider the Cauchy problem for $u=u(x, y)$,

$$
\begin{cases}u u_{x x}+u_{x} u_{x y}+u_{y} u_{y y}=u^{2} & \text { for }(x, y) \in \mathbb{R}^{2} \\ u(x, 0)=x^{2}-1 & \text { for } x \in \mathbb{R} \\ u_{y}(x, 0)=x & \text { for } x \in \mathbb{R}\end{cases}
$$

If possible, find $u_{x x}(P), u_{x y}(P)$, and $u_{y y}(P)$. If it is not possible to find all of these derivatives state the condition that is violated.

Do this for the two cases:
a) $P=(0,0)$ and b) $P=(1,0)$.

