Qualifying Exam - Math 523 - January 2010 - P. Bauman

Instructions: Show your reasoning in all problems.

1. Consider the following Cauchy problem: $xu_x - yu_y = u - 1,$ $u(x, x) = 1 + x^3.$

a) (8 pts.) At what values x_0 is there a unique C^1 solution in a neighborhood of (x_0, x_0) ? Cite a theorem to support your answer.

b) (12 pts.) Find the solution near the points (x_0, x_0) found in 1.a).

2.) (20 pts.) Let D be a bounded smooth domain in \mathbb{R}^n . Assume that u is a given function in $C^3(D) \cap C^2(\overline{D})$, and $\Delta u = 0$ in D. Can $(\frac{\partial u}{\partial x_1})^2$ have an interior maximum in D? Justify your answer.

3.a.) (10 pts) Let Ω be a bounded C^2 domain in \mathbb{R}^n . Assume: u, u_t, u_{x_i} , and $u_{x_i x_j}$ are in $C(\overline{\Omega} \times [0, \infty))$ for all $1 \le i, j \le n$, $u_t - \Delta u = 0$ in $\Omega \times [0, \infty)$, and u = 0 in $\partial \Omega \times [0, \infty)$.

Show that for each T > 0:

(*) $\int_{\Omega} u^2(x,T) dx \leq \int_{\Omega} u^2(x,0) dx.$

Hint: $0 = 2u(u_t - \Delta u)$ in $\Omega \times (0, T)$. Integrate by parts.

3.b.)(10 pts.) By integrating by parts as in 3.a) on $B_R(0) \times (0, T)$ and letting $R \to \infty$, prove that if v is a continuous, bounded solution in $\mathbf{R}^n \times [\mathbf{0}, \infty)$ of:

 $v_t - \Delta v = 0$ in $\mathbf{R}^{\mathbf{n}} \times [\mathbf{0}, \infty)$, v(x, 0) = f(x) for all x in $\mathbf{R}^{\mathbf{n}}$, $\int_{\mathbf{R}^{\mathbf{n}}} |f(x)|^2 dx < \infty$, where f is C^{∞} with compact support in $\mathbf{R}^{\mathbf{n}}$, and $v_t, v_{x_i}, v_{x_i x_j}$ are in $C(\mathbf{R}^{\mathbf{n}} \times [\mathbf{0}, \infty))$ for all $1 \le i, j \le n$,

then $\int_{\mathbf{R}^n} |v(x,T)|^2 dx \leq \int_{\mathbf{R}^n} |v(x,0)|^2 dx$.

4.) Consider the solution of $u_{tt} - \Delta u = 0$ in $\mathbf{R}^3 \times (\mathbf{0}, \infty)$, u(x, 0) = 0 and $u_t(x, 0) = g(x)$ for all x in \mathbf{R}^3 ,

where u is in $C^2(\mathbf{R}^3 \times [\mathbf{0}, \infty)$. Assume g is C^{∞} with compact support in \mathbf{R}^3 and g(x) > 0 when |x| < 1, g(x) = 0 when $|x| \ge 1$.

a.) (10 pts.) What is the solution to the above problem?

b.) (10 pts.) For each x_0 in \mathbb{R}^3 , identify $Z(x_0) \equiv \{t > 0 : u(x_0, t) = 0\}$. Justify your answer.

5. Let $\Gamma = \{(x, y) \in \mathbf{R}^2 : y = x^2\}$. Consider the Cauchy problem: $4yu_{yy} - 4xu_{xy} + 3xy^2u_{xx} = 0,$ $u(x, y) = x^3y^2 - 2y$ on $\Gamma,$ $u_y(x, y) = 3xy^2$ on $\Gamma.$

(a.) (10 pts.) At what points (x_0, y_0) on Γ is there a real analytic solution of this problem in a neighborhood of (x_0, y_0) ? Cite a theorem to justify your answer.

b.) (10 pts.) Compute the terms of order ≤ 1 in the power series for the solution expanded about the point (1, 1).