Instructions: Show your reasoning in all problems.

1. Consider the following Cauchy problem:

$$
\begin{aligned}
& x u_{x}-y u_{y}=u-1, \\
& u(x, x)=1+x^{3} .
\end{aligned}
$$

a) (8 pts .) At what values x_{0} is there a unique C^{1} solution in a neighborhood of $\left(x_{0}, x_{0}\right)$? Cite a theorem to support your answer.
b) (12 pts .) Find the solution near the points $\left(x_{0}, x_{0}\right)$ found in 1.a).
2.) (20 pts.) Let D be a bounded smooth domain in $\mathbf{R}^{\mathbf{n}}$. Assume that u is a given function in $C^{3}(D) \cap C^{2}(\bar{D})$, and $\Delta u=0$ in D. Can $\left(\frac{\partial u}{\partial x_{1}}\right)^{2}$ have an interior maximum in D ? Justify your answer.
3.a.) (10 pts) Let Ω be a bounded C^{2} domain in $\mathbf{R}^{\mathbf{n}}$. Assume:
$u, u_{t}, u_{x_{i}}$, and $u_{x_{i} x_{j}}$ are in $C(\bar{\Omega} \times[0, \infty))$ for all $1 \leq i, j \leq n$,
$u_{t}-\Delta u=0$ in $\Omega \times[0, \infty)$,
and $u=0$ in $\partial \Omega \times[0, \infty)$.
Show that for each $T>0$:
$\left.{ }^{*}\right) \int_{\Omega} u^{2}(x, T) d x \leq \int_{\Omega} u^{2}(x, 0) d x$.
Hint: $0=2 u\left(u_{t}-\Delta u\right)$ in $\Omega \times(0, T)$. Integrate by parts.
3.b.) (10 pts.) By integrating by parts as in 3.a) on $B_{R}(0) \times(0, T)$ and letting $R \rightarrow \infty$, prove that if v is a continuous, bounded solution in $\mathbf{R}^{\mathbf{n}} \times[\mathbf{0}, \infty)$ of:
$v_{t}-\Delta v=0$ in $\mathbf{R}^{\mathbf{n}} \times[\mathbf{0}, \infty)$,
$v(x, 0)=f(x)$ for all x in $\mathbf{R}^{\mathbf{n}}$,
$\int_{\mathbf{R}^{\mathbf{n}}}|f(x)|^{2} d x<\infty$,
where f is C^{∞} with compact support in $\mathbf{R}^{\mathbf{n}}$,
and $v_{t}, v_{x_{i}}, v_{x_{i} x_{j}}$ are in $C\left(\mathbf{R}^{\mathbf{n}} \times[\mathbf{0}, \infty)\right)$ for all $1 \leq i, j \leq n$,
then $\int_{\mathbf{R}^{\mathbf{n}}}|v(x, T)|^{2} d x \leq \int_{\mathbf{R}^{\mathbf{n}}}|v(x, 0)|^{2} d x$.
4.) Consider the solution of $u_{t t}-\Delta u=0$ in $\mathbf{R}^{\mathbf{3}} \times(\mathbf{0}, \infty)$, $u(x, 0)=0$ and $u_{t}(x, 0)=g(x)$ for all x in \mathbf{R}^{3}, where u is in $C^{2}\left(\mathbf{R}^{\mathbf{3}} \times[\mathbf{0}, \infty)\right.$. Assume g is C^{∞} with compact support in $\mathbf{R}^{\mathbf{3}}$ and $g(x)>0$ when $|x|<1, g(x)=0$ when $|x| \geq 1$.
a.) (10 pts.) What is the solution to the above problem?
b.) (10 pts.) For each x_{0} in \mathbf{R}^{3}, identify $Z\left(x_{0}\right) \equiv\left\{t>0: u\left(x_{0}, t\right)=0\right\}$. Justify your answer.
5. Let $\Gamma=\left\{(x, y) \in \mathbf{R}^{2}: y=x^{2}\right\}$. Consider the Cauchy problem:
$4 y u_{y y}-4 x u_{x y}+3 x y^{2} u_{x x}=0$, $u(x, y)=x^{3} y^{2}-2 y$ on Γ, $u_{y}(x, y)=3 x y^{2}$ on Γ.
(a.) (10 pts.) At what points $\left(x_{0}, y_{0}\right)$ on Γ is there a real analytic solution of this problem in a neighborhood of $\left(x_{0}, y_{0}\right)$? Cite a theorem to justify your answer.
b.) (10 pts.) Compute the terms of order ≤ 1 in the power series for the solution expanded about the point $(1,1)$.

