Math 523
Qualifying Examination
August 9, 2010
Prof. N. Garofalo

Name..
I. D. no.

Problem	Score	Max. pts.
$\mathbf{1}$		20
$\mathbf{2}$		20
$\mathbf{3}$		30
$\mathbf{4}$		30
$\mathbf{5}$		30
Total		130

Problem 1. Let E be a regular hexagon centered at the origin of the plane \mathbb{R}^{2}. Let f be the harmonic function in E with boundary value 1 on one of the sides of E and 0 on each of the remaining five sides. What is the value of f at the origin? Explain your reasoning.

Problem 2. Consider the Cauchy problem for the wave equation

$$
\left\{\begin{array}{l}
f_{x x}-f_{t t}=0, \quad \text { in } \mathbb{R}_{+}^{2}=\mathbb{R} \times \mathbb{R}_{+}, \\
f(x, 0)=\phi(x), \quad f_{t}(x, 0)=\psi(x), \quad x \in \mathbb{R} .
\end{array}\right.
$$

Suppose that ϕ, ψ vanish outside of the interval $[-1,1]$. In which region of the upper half-plane \mathbb{R}_{+}^{2} one is guaranteed that the solution f vanishes identically?

Problem 3. Let $f \in C^{1}\left(\mathbb{R}^{2}\right)$ be a solution of the first-order equation

$$
f_{t}+f f_{x}=0, \quad(x, t) \in \mathbb{R}^{2} .
$$

Prove that $f \equiv$ constant.
Hint: By analyzing the characteristic lines of f starting at $(x, 0)$ prove that the function $x \rightarrow$ $f(x, 0)$ must be constant on \mathbb{R}

Problem 4. For a given $\alpha>0$ let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution in \mathbb{R}^{n} of the equation $\Delta f=|x|^{\alpha}$. Prove that for any $\beta<\alpha+2$ one must have

$$
\limsup _{|x| \rightarrow \infty} \frac{|f(x)|}{|x|^{\beta}}=+\infty .
$$

Problem 5. Given $x_{0} \in \mathbb{R}^{n}$ and $R>0$ consider the homogeneous Cauchy problem

$$
\left\{\begin{array}{l}
\Delta f-f_{t}=0, \quad \text { in } \mathbb{R}^{n} \times(0, \infty) \\
f(x, 0)=\mathbf{1}_{B\left(x_{0}, R\right)}(x), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

where $\mathbf{1}_{B\left(x_{0}, R\right)}$ is the indicator function of the ball $B\left(x_{0}, R\right)=\left\{x \in \mathbb{R}^{n}| | x-x_{0} \mid<R\right\}$. Prove that there exists $0<A<1$, depending only on $n \in \mathbb{N}$, but not on x_{0} or R, such that

$$
f\left(x_{0}, A R^{2}\right) \geq \frac{1}{2} .
$$

