Math 523
Qualifying Examination
August 18, 2009
Prof. N. Garofalo

Name..
I. D. no.

Problem	Score	Max. pts.
$\mathbf{1}$		20
$\mathbf{2}$		20
$\mathbf{3}$		20
$\mathbf{4}$		30
$\mathbf{5}$		40
Total		130

Problem 1. Let ϕ be a continuous function on \mathbb{R}^{n} with compact support. Prove that if ϕ is spherically symmetric, i.e. there exists $\phi^{*}:[0, \infty) \rightarrow \mathbb{R}$ such that $\phi(x)=\phi^{*}(|x|), x \in \mathbb{R}^{n}$, then the solution of the homogeneous Cauchy problem

$$
\left\{\begin{array}{l}
\Delta f-f_{t}=0, \quad \text { in } \mathbb{R}^{n} \times(0, \infty), \\
f(x, 0)=\phi(x), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

is a function $f(x, t)$ having spherical symmetry in the variable $x \in \mathbb{R}^{n}$ as well.

Problem 2. Consider the function

$$
f(x, t)=\int_{0}^{1} \frac{t}{t^{2}+(x-y)^{2}} d y, \quad(x, t) \in \mathbb{R}_{+}^{2}=\mathbb{R} \times(0, \infty) .
$$

Motivating your answer decide which of the following statements is true:
A. $f \in C^{1}\left(\mathbb{R}_{+}^{2}\right)$, but $f \notin C^{2}\left(\mathbb{R}_{+}^{2}\right)$
B. $f \in C^{2}\left(\mathbb{R}_{+}^{2}\right)$ and $f_{x x}+f_{t t}=-2 f$ in \mathbb{R}_{+}^{2}
C. $f \in C^{2}\left(\mathbb{R}_{+}^{2}\right)$ and $f_{x x}+f_{t t}=-f$ in \mathbb{R}_{+}^{2}
D. $f \in C^{2}\left(\mathbb{R}_{+}^{2}\right)$ and $f_{x x}+f_{t t}=0$ in \mathbb{R}_{+}^{2}
E. $f \in C^{2}\left(\mathbb{R}_{+}^{2}\right)$ and $f_{x x}+f_{t t}=2$ in \mathbb{R}_{+}^{2}

Problem 3. Let $\phi \in C\left(\mathbb{R}^{3}\right)$ be a function with compact support. Solve the Cauchy problem

$$
\left\{\begin{array}{l}
\Delta f-\frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{3}}-\frac{\partial f}{\partial t}=0, \quad \text { in } \mathbb{R}^{3} \times(0, \infty), \\
f(x, 0)=\phi(x), \quad x \in \mathbb{R}^{3} .
\end{array}\right.
$$

Problem 4. Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution in \mathbb{R}^{n} of the equation $\Delta f=|x|^{3}$. Prove that an estimate such as

$$
|f(x)| \leq C\left(1+|x|^{4+\epsilon}\right), \quad x \in \mathbb{R}^{n}
$$

is impossible for $C \geq 0$ and $0 \leq \epsilon<1$.

Problem 5. Solve the Cauchy problems:

$$
\begin{gathered}
\left\{\begin{array}{l}
\Delta f-f_{t t}=|x|^{2} \\
f(x, 0)=0, \quad f_{t}(x, 0)=0 \quad \text { in } \quad \mathbb{R}^{3} \times(0, \infty), \\
x \in \mathbb{R}^{3} .
\end{array}\right. \\
\begin{cases}\Delta f-f_{t t}=0 \quad \text { in } \mathbb{R}^{3} \times(0, \infty), \\
f(x, 0)=0, \quad f_{t}(x, 0)=\mathbf{1}_{B(0, R)}, & x \in \mathbb{R}^{3}\end{cases}
\end{gathered}
$$

where $\mathbf{1}_{B(0, R)}$ denotes the indicator function of the ball in \mathbb{R}^{3} centered at the origin with radius $R>0$.

