MA-523 Qualifying Exam, January 2008

P. Bauman and P. Stefanov

Each problem is worth 20 points. Everywhere in this exam, Ω be a bounded domain (an open connected set) in \mathbf{R}^{n} with smooth boundary.

1. Let u be a harmonic function in Ω, continuous in $\bar{\Omega}$.
(a) Show that if

$$
|u(x)| \leq \sum_{|\alpha| \leq 1} C_{\alpha} x^{\alpha}, \quad \text { for all } x \in \partial \Omega,
$$

and for some constants C_{α}, then the same inequality holds inside Ω, as well (with the same constants).
(b) Show that the inequality

$$
\begin{equation*}
|u(x)| \leq \sum_{|\alpha| \leq 2} C_{\alpha} x^{\alpha}, \quad \text { for all } x \in \partial \Omega \tag{1}
\end{equation*}
$$

does not necessarily imply that the same inequality (with the same constants) holds inside Ω, as well. In other words, show that for some choice of $\left\{C_{\alpha}\right\}_{|\alpha| \leq 2}$, the inequality (1) does not imply the same inequality in Ω.
2. (a) Prove that there is no more than one solution $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ to the Laplace equation with Robin boundary conditions

$$
\begin{array}{rc}
-\Delta u=f & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}+\alpha u=h & \text { on } \partial \Omega
\end{array}
$$

where f and h are given functions, ν is the outer normal to $\partial \Omega$, and $\alpha>0$ is a given function.
(b) Let $\Omega=B(0,1)$. Show that if $\alpha=-1$, then there is no uniqueness.
3. Let $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ solve the following initial boundary value problem for the wave equation with an absorption term

$$
\left\{\begin{aligned}
u_{t t}+u_{t} & =\Delta u & & \text { for } x \in \Omega, t>0 \\
\partial u / \partial \nu & =0 & & \text { for } x \in \partial \Omega, t \geq 0 \\
u & =f(x) & & \text { for } t=0 \\
u_{t} & =g(x) & & \text { for } t=0
\end{aligned}\right.
$$

Here f and g are smooth functions with compact support, and ν is the unit outward normal.
(a) Let

$$
E(t)=\frac{1}{2} \int_{\Omega}\left(\left|u_{t}\right|^{2}+\left|\nabla_{x} u\right|^{2}\right) d x
$$

be the energy. Prove that

$$
E(t) \leq E(0) \quad \text { for any } t \geq 0
$$

(b) Is there uniqueness of the solution (in the class $u \in C^{2}(\bar{\Omega} \times[0, \infty))$)? Explain.
(c) Solve the following one-dimensional version of this problem

$$
\left\{\begin{aligned}
u_{t t}+u_{t} & =u_{x x} & & \text { for } 0<x<\pi, t>0 \\
u_{x}(0, t)=u_{x}(\pi, t) & =0 & & \text { for } t \geq 0 \\
u & =\cos x & & \text { for } t=0 \\
u_{t} & =0 & & \text { for } t=0
\end{aligned}\right.
$$

4. Consider the equation

$$
\begin{equation*}
4 u_{x x}-u_{y y}-8 u_{x}+4 u_{y}+32=0 \tag{2}
\end{equation*}
$$

(a) Find the characteristic curves of the equation and perform a characteristic change of variables that would reduce that equation to its canonical form.
(b) Using (a), find the general solution of (2).
(c) Find all points P on the parabola $\gamma:=\left\{(x, y) ; y=x^{2}\right\}$ with the property that there exists a solution near P solving (1) and satisfying the conditions

$$
\left.u\right|_{\gamma}=\left.\sin (x+y) \quad u_{y}\right|_{\gamma}=x y^{2}
$$

State clearly the theorem that you use.
5. Solve the problem

$$
\begin{aligned}
u_{x}+(2 x+1) u_{y}+u^{2} & =0, \quad x>0, y>0 \\
u(x, 0) & =0, \quad x>0 \\
u(0, y) & =y, \quad y>0
\end{aligned}
$$

Show that the solution u to the problem can be extended to the whole first quadrant $x \geq 0, y \geq 0$.

