Math 523 Qualifying Examination August , 2008 Prof. N. Garofalo

Name.....

I. D. no.

Problem	Score	Max. pts.
1		20
2		20
3		20
4		20
5		20
Total		100

Problem 1. 1) Let $\Omega \subset \mathbb{R}^n$ be an open set and consider a sequence $\{f_k\}_{k\in\mathbb{N}}, f_k \in C^2(\Omega)$, of harmonic functions in Ω such that $0 \leq f_k \leq f_{k+1}$ and for which

$$f(x) \stackrel{def}{=} \sup_{k \in \mathbb{N}} f_k(x) < \infty$$
, for every $x \in \Omega$.

Prove that f is harmonic in Ω .

Problem 2. Let u be a solution of the initial value problem for the nonlinear equation

$$\begin{cases} u_t + uu_x = 0, \\ u(x,0) = x. \end{cases}$$

u(x, 0) = x. Find the region in the (x, t)-plane where the solution develops shocks (i.e., discontinuities). **Problem 3.** Use Fourier transform to solve the Cauchy problem

$$\begin{cases} u_{xx} - u_{tt} = 0 , & \text{in } \mathbb{R} \times (0, \infty) , \\ u_t(x, 0) = 1 & \text{if } |x| \le 1 , & u_t(x, 0) = 0 & \text{if } |x| > 1 , & u(x, 0) = 0. \end{cases}$$

Problem 4. (i) Let $\mathbb{S}^{n-1} = \{\omega \in \mathbb{R}^n \mid |\omega| = 1\}$ be the unit sphere centered at the origin, and define

$$\phi(x) = \int_{\mathbb{S}^{n-1}} e^{i\sqrt{\lambda} \langle x, \omega \rangle} \, d\sigma(\omega) \,, \qquad \lambda > 0 \,, \quad x \in \mathbb{R}^n \,,$$

where, $d\sigma$ denotes the (n-1)-dimensional surface measure on \mathbb{S}^{n-1} , and $i^2 = -1$. Prove that the function $u(x,t) = e^{-\lambda t}\phi(x)$, solves the heat equation $Hu = \Delta u - u_t = 0$ in \mathbb{R}^{n+1} .

(ii) Let $\Omega \subset \mathbb{R}^n$ be a bounded open set and suppose that $u \in C^3(\Omega \times (0, \infty))$ be a solution to $Hu = \Delta u - u_t = 0$ in $\Omega \times (0, \infty)$. Prove that the function $f = |Du|^2 + u_t^2$ cannot attain a maximum at a point (x_0, t_0) , with $x_0 \in \Omega$ and $t_0 > 0$, unless $u \equiv constant$ in $\Omega \times (0, t_0)$.

Problem 5. For $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and a given function ϕ , indicate $\phi_{x_i} = \frac{\partial \phi}{\partial x_i}$, i = 1, ..., n. Solve the non-homogeneous initial value problem

$$\begin{cases} \phi_t + \phi_{x_1} - \phi_{x_n} = 2t + |x|^2, & \text{in } \mathbb{R}^n \times (0, \infty), \\ \phi(x, 0) = x_1^2 - x_n^2, & x \in \mathbb{R}^n. \end{cases}$$