Math 523 Qualifying Examination January 3, 2007

Name.....

I. D. no.

Problem	Score	Max. pts.
1		20
2		20
3		20
4		20
5		20
Total		100

Problem 1. 1) Let $\mathbb{S}^{n-1} = \{\omega \in \mathbb{R}^n \mid |\omega| = 1\}$ be the unit sphere centered at the origin. Prove that the function $u(x,t) = e^{i\sqrt{\lambda}t}\phi(x)$, where $\phi \in C^{\infty}(\mathbb{R}^n)$ is defined by

$$\phi(x) = \int_{\mathbb{S}^{n-1}} e^{i\sqrt{\lambda} \langle x, \omega \rangle} \, d\sigma(\omega) \,, \qquad \lambda > 0 \,, \quad x \in \mathbb{R}^n \,,$$

solves the wave equation $\Box u = \Delta u - u_{tt} = 0$ in \mathbb{R}^{n+1} . Here, $d\sigma$ denotes the (n-1)-dimensional surface measure on \mathbb{S}^{n-1} , and $i^2 = -1$.

2) Find an explicit formula for u(x,t) when n = 3.

Problem 2. Solve the Cauchy problem for the nonlinear equation

$$\begin{cases} u_t + u^2 u_x = 0 , \\ u(x,0) = x . \end{cases}$$

u(x, 0) = x. Find the region in the (x, t)-plane where the solution develops shocks (i.e., discontinuities). **Problem 3.** Use Fourier transform to solve the Cauchy problem

$$\begin{cases} \Delta u - u - u_t = 0 , & \text{in } \mathbb{R}^n \times (0, \infty) , \\ u(x, 0) = 1 & \text{if } |x| \le 1 , u(x, 0) = 0 , & \text{if } |x| > 1 . \end{cases}$$

Problem 4. Let

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \frac{x^2}{36} + \frac{y^2}{9} + \frac{z^2}{25} < 1 \right\} \;,$$

and assume that $u \in C^2(\overline{\Omega})$ solves the problem

(1)
$$\begin{cases} \Delta u = -1, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases}$$

Prove that

$$\frac{3}{2} \ \le \ u(0,0,0) \ \le \ 6 \ .$$

Problem 5. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set of class C^1 , and $b \in C^1(\mathbb{R}^{n+1};\mathbb{R}^n)$. Prove that there exists a constant $C = C(\Omega, n) > 0$ sufficiently small such that, if $||(div \ b)^-||_{L^{\infty}(\mathbb{R}^{n+1})} \leq C$, then there exists at most one solution $u \in C^{2,1}(\overline{\Omega} \times [0,\infty))$ to the problem

$$\begin{cases} \Delta u + \langle b, Du \rangle - u_t = 0 & \text{in } \Omega \times [0, \infty) , \\ u(x, 0) = \phi(x) , & x \in \Omega , \quad u(x, t) = \psi(x, t) , (x, t) \in \partial \Omega \times (0, \infty) . \end{cases}$$

Here, for a given $a \in \mathbb{R}$, a^+, a^- respectively denote its positive and negative part, so that $a = a^+ - a^-$.

Note: You can assume the validity of the Poincaré inequality

$$\int_{\Omega} f(x)^2 dx \leq C^*(n) (diam \ \Omega)^2 \int_{\Omega} |Df|^2 dx ,$$

where $C^*(n) > 0$ depends only on the dimension n, and f is an arbitrary function in $C^1(\overline{\Omega})$ such that f = 0 on $\partial\Omega$.