QUALIFYING EXAM

SHOW ALL YOUR WORK. EACH PROBLEM IS WORTH 20 POINTS.

1) (a) Show that inversion with respect to $S(0,1)$, i.e. the mapping $\xi \longrightarrow \xi^{*}=\frac{\xi}{|\xi|^{2}}$, maps the quarter plane $\Omega=\left\{(x, y) \in \mathbb{R}^{2}, x>1, y>1\right\}$ onto the lens shaped domain Ω^{*} bounded by the two circles

$$
\left(x-\frac{1}{2}\right)^{2}+y^{2}=\frac{1}{4}, \quad x^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4} .
$$

(b) Solve the Dirichlet boundary value problem for Laplace's equation in Ω^{*}, with $u^{*}=1$ on the top boundary of the lens, and $u^{*}=0$ on the bottom boundary of the lens.
[Hint: The solution corresponding to the Dirichlet problem in the quarter space $x>1$, $y>1$ is easily found to be

$$
u(x, y)=\frac{2}{\pi} \theta=\frac{2}{\pi} \arctan \frac{y-1}{x-1}
$$

where θ is the polar angle with $(1,1)$ as the center of the polar coordinate system.]
2) Consider the initial value problem for the conservation law $\frac{\partial u}{\partial t}+\frac{\partial f(u)}{\partial x}=0$ for $x \in \mathbb{R}$, $t>0$, with initial condition $u(x, 0)=h(x)$ for $x \in \mathbb{R}$, where f is strictly convex (i.e. $f^{\prime \prime}(u)>0$ for all u). Show that, if there is a point \bar{x} at which h is decreasing, then the initial value problem does not admit a classical solution, i.e. one that is continuously differentiable for $x \in \mathbb{R}$ and $t>0$.
[Hint: Use the implicit function theorem to compute the partial derivatives u_{t} and u_{x}.]
3) Let $L>0$ and consider the following initial-boundary value problem:

$$
\left\{\begin{aligned}
u_{t}-u_{x x} & =0, & 0<x<L, 0<t \\
u(x, 0) & =\varphi(x), & 0 \leq x \leq L \\
u(0, t) & =0, u(L, t)=1 ; & 0 \leq t
\end{aligned}\right.
$$

where φ is continuous with sectionally continuous derivative on $[0, L], \varphi(0)=0$, and $\varphi(L)=1$.
(a) Find the solution $u(x, t)$ of the problem.
(b) Is the solution C^{∞} for $t>0$? Justify your answer.
(c) Find $\lim _{t \rightarrow \infty} u(x, t)$.
4) Find the solution of the initial value problem

$$
\left\{\begin{aligned}
u_{t t}-u_{x x}+u & =0, & & \text { in } \mathbb{R} \times(0, \infty), \\
u(x, 0) & =f(x), & & \text { in } \mathbb{R}, \\
u_{t}(x, 0) & =g(x), & & \text { in } \mathbb{R},
\end{aligned}\right.
$$

where $f, g \in C_{0}^{\infty}(\mathbb{R})$.
[Hint: Let $v(x, y, t)=h(y) u(x, t)$, and find h so that v solves the two-dimensional wave equation.]
5) State the Cauchy-Kovalevskaya Theorem. Under what assumptions on f (if any) does this theorem guarantee the existence of a unique real analytic solution to the Cauchy problem

$$
\left\{\begin{aligned}
(\sin u) u_{x}-u_{y}+u u_{z} & =\tan u, \\
u\left(x, y, x^{2}\right) & =f(x),
\end{aligned}\right.
$$

near the point $(2,1,4)$? Justify your answer.

