Math 523
Qualifying Examination
January 2006
Prof. N. Garofalo

Name.

\qquad
I. D. no.

Problem	Score	Max. pts.
$\mathbf{1}$		20
$\mathbf{2}$		20
$\mathbf{3}$		20
$\mathbf{4}$		20
$\mathbf{5}$		20
$\mathbf{6}$		20
Total		120

Problem 1. Let $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$ denote the unit sphere centered at the origin, i.e. $\mathbb{S}^{n-1}=\{\omega \in$ $\left.\mathbb{R}^{n}| | \omega \mid=1\right\}$, and consider the function $\phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$ defined as follows

$$
\phi(x)=\int_{\mathbb{S}^{n-1}} e^{i \sqrt{\lambda}<x, \omega>} d \sigma(\omega), \quad \lambda>0, \quad x \in \mathbb{R}^{n}
$$

where $d \sigma$ denotes the $(n-1)$-dimensional surface measure on \mathbb{S}^{n-1}, and $i^{2}=-1$. Prove that the function $u \in C^{\infty}\left(\mathbb{R}^{n+1}\right)$ defined by

$$
u(x, t)=e^{-\lambda t} \phi(x)
$$

solves the heat equation $H u=\Delta u-u_{t}=0$ in \mathbb{R}^{n+1}.

Problem 2. Consider in the plane the solution to the Dirichlet problem

$$
\begin{cases}\Delta u=0 & \text { in } \quad Q \\ u=\phi_{1} & \text { on } \quad \partial Q\end{cases}
$$

where $Q=\left\{(x, y) \in \mathbb{R}^{2}| | x|<1,|y|<1\}\right.$, and ϕ_{1} is the function which equals 1 on one of the edges of the square Q, and 0 on the remaining three edges (never mind the fact that such a ϕ_{1} is not continuous on ∂Q, you can still uniquely solve the Dirichlet problem with such boundary datum).
a) Compute $u(0)$.
b) Can you tell what is $u(0)$ for the solution of an analogous Dirichlet problem for a regular polygon with n edges, and with boundary datum 1 on one edge and 0 anywhere else?
Hint: Use the invariance of Laplace's operator with respect to orthogonal transformations and the maximum principle...

Problem 3. Let $n \geq 2$ and $u \in C^{2}\left(\mathbb{R}^{n}\right)$ be a solution in \mathbb{R}^{n} of the equation $\Delta u=|x|^{k}$, for some $k \geq 0$. With σ_{n-1} being the $(n-1)$-dimensional measure of the unit sphere, denote by

$$
M_{u}(r)=\frac{1}{\sigma_{n-1} r^{n-1}} \int_{\partial B(0, r)} u(y) d \sigma(y)
$$

the spherical mean of u over the sphere centered at the origin with radius r.
a) Prove that for every $r \geq 0$ one has

$$
M_{u}(r)=u(0)+\frac{r^{k+2}}{(n+k)(k+2)}
$$

b) Show that an estimate such as

$$
|u(x)| \leq C\left(1+|x|^{k+2-\epsilon}\right), \quad x \in \mathbb{R}^{n}
$$

is impossible for $C \geq 0$ and $\epsilon>0$.

Problem 4. Problem 4. A C^{1} open set $A \subset \mathbb{R}^{n}$ is called starlike if, denoted by ν the outer unit normal to ∂A, one has

$$
<x, \nu(x)>\geq 0 \quad \text { for every } \quad x \in \partial A
$$

When the inequality is strict everywhere on ∂A, then A is said strictly starlike.
Let $\Omega_{1} \subset \bar{\Omega}_{1} \subset \Omega_{0}$ be two connected, bounded, starlike domains, and suppose that the problem

$$
\left\{\begin{array}{l}
\Delta u=0 \quad \text { in } \quad \Omega=\Omega_{0} \backslash \bar{\Omega}_{1} \tag{1}\\
u=1 \quad \text { on } \quad \partial \Omega_{1}, u=0 \quad \text { on } \quad \partial \Omega_{0}
\end{array}\right.
$$

admits a solution $u \in C^{3}(\bar{\Omega})$.
(i) Show that $0<u<1$ in Ω.
(ii) Compute the equation satisfied by $v(x) \stackrel{\text { def }}{=}<x, \nabla u(x)>$ in Ω, and use it to prove that every C^{1} level set $E_{t}=\{x \in \Omega \mid u(x)>t\}$ of $u, 0<t<1$, is strictly starlike.

Problem 5. Let u be a solution of the initial-value problem for the wave equation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u=0 \quad \text { in } \mathbb{R}^{3} \times[0, \infty), \\
u(x, 0)=\phi, \quad u_{t}(x, 0)=\psi(x),
\end{array}\right.
$$

where $\phi, \psi \in C^{\infty}\left(\mathbb{R}^{3}\right)$. For every $t \geq 0$ let

$$
E(t)=\sum_{|\alpha|+j \leq 2} \int_{\mathbb{R}^{3}}\left|D_{x}^{\alpha} D_{t}^{j} u(x, t)\right| d x
$$

Use Kirchoff's formula and an integration by parts that converts surface in solid integrals, to prove that if $E(0)<\infty$, then one has for every $(x, t) \in \mathbb{R}^{3} \times(0, \infty)$, with $t \geq 1$,

$$
|u(x, t)| \leq \frac{C}{t} E(0),
$$

for some constant $C \geq 0$ independent of u.
Hint: On $\partial B(x, t)$ one has $1 \equiv\left\langle\frac{y-x}{t}, \frac{y-x}{t}\right\rangle=\left\langle\frac{y-x}{t}, \nu\right\rangle$, where ν is the outer unit normal on $\partial B(x, t) \ldots$

Problem 6. Let u be the solution of the initial-value problem

$$
\begin{cases}\Delta u-u_{t}=0, & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u(x, 0)=\phi(x), & x \in \mathbb{R}^{n},\end{cases}
$$

where $\phi \in C\left(\mathbb{R}^{n}\right)$ is a function such that for a fixed $R>0, \phi(x)=0$ for $|x|>R$. Prove that there exists a $C=C(n)>0$, such that for every $x \in \mathbb{R}^{n}$ and $t>0$

$$
\left|\nabla_{x} u(x, t)\right| \leq \frac{C}{\sqrt{t}}\left(\max _{|y| \leq R}|\phi(y)|\right)
$$

(Recall that

$$
G(x, t)=\left\{\begin{array}{lc}
(4 \pi t)^{-\frac{n}{2}} & \exp \left(-\frac{|x|^{2}}{4 t}\right), \\
0, & t>0
\end{array}\right.
$$

is the fundamental solution of the heat equation $H u=\Delta u-u_{t}=0$ in R^{n+1}, with singularity at $(0,0))$

