QUALIFYING EXAMINATION JANUARY 2005

MATH 523 - A. Petrosyan and P. Stefanov

Each problem is worth 20 points.

1. Find the solution to the Cauchy problem

$$
y u_{x}-x u_{y}=2 x y u,\left.\quad u\right|_{x=y}=x^{2}
$$

2. Consider the Cauchy problem

$$
\begin{aligned}
u_{t t}-u_{t x}-2 u_{x x}+x u_{t}+5 u & =0 \\
\left.u\right|_{\gamma} & =e^{x} \\
\left.u_{t}\right|_{\gamma} & =3-2 x
\end{aligned}
$$

where γ is the curve $t=1-\cos x$ in the $x t$ plane.
(a) Is there a solution of this problem near $(0,0)$? Why? What is the regularity of the solution?
(b) Find the truncated Taylor expansion of $u(x, t)$ of order 2 near the point $(0,0)$ (i.e., find the quadratic approximation u_{2} of u near $(0,0)$ such that $\left.u(x, t)=u_{2}(x, t)+O\left(|x|^{3}+|t|^{3}\right)\right)$.
3. Find an explicit solution $u(x, y)$ to the following problem

$$
\left\{\begin{aligned}
u_{x x}+u_{y y} & =0 & & \text { for } 1<x^{2}+y^{2}<4 \\
u & =x & & \text { for } x^{2}+y^{2}=1 \\
u & =1+x y & & \text { for } x^{2}+y^{2}=4
\end{aligned}\right.
$$

4. Find an explicit solution to the problem

$$
\left\{\begin{aligned}
u_{t}-u_{x x} & =0, & & 0<t, x \in \mathbf{R} \\
\left.u\right|_{t=0} & =e^{3 x}, & & x \in \mathbf{R}
\end{aligned}\right.
$$

5. Let $\Omega \subset \mathbf{R}^{n}$ be a bounded domain with smooth boundary. Let $u_{1} \in C^{1}(\bar{\Omega})$ be harmonic in Ω, and let $u_{2} \in C^{1}\left(\mathbf{R}^{n} \backslash \Omega\right)$ be harmonic outside $\bar{\Omega}$. Prove that the function $u(x), x \in \mathbf{R}^{n}$ defined by

$$
u(x)= \begin{cases}u_{1}(x), & x \in \Omega \\ u_{2}(x), & x \in \mathbf{R} \backslash \Omega\end{cases}
$$

is harmonic in \mathbf{R}^{n} if and only if

$$
\left.u_{1}\right|_{\partial \Omega}=\left.u_{2}\right|_{\partial \Omega} \quad \text { and }\left.\quad \partial_{\nu} u_{1}\right|_{\partial \Omega}=\left.\partial_{\nu} u_{2}\right|_{\partial \Omega}
$$

As usual, ν denotes the exterior normal to $\partial \Omega$, that is also the interior normal to $\mathbf{R}^{n} \backslash \Omega$.
Hint: Prove first that u is a weak solution to $\Delta u=0$ using Green's formula.
6. Use Hadamard's method of descent to derive the formula for the solution of initial value problem for the 1 D wave equation on the whole line

$$
u_{t t}=u_{x x},\left.\quad u\right|_{t=0}=f(x),\left.\quad u_{t}\right|_{t=0}=g(x)
$$

from the known formula for the solution of the 2 D wave equation in the whole plane

$$
u_{t t}=u_{x x}+u_{y y}
$$

Assume that f and g are as smooth as needed.

